68 research outputs found
Templated Synthesis and Chemical Behavior of Nickel Nanoparticles within High Aspect Ratio Silica Capsules
One-dimensional transition metal nanostructures are of interest in many magnetic and catalytic applications. Using a combination of wet chemical synthesis, optical (infrared), and structural characterization methods (powder X-ray diffraction, scanning and transmission electron microscopy), we have investigated four paths to access 1D nickel nanostructures: (1) direct chemical reduction of a self-assembled nickel-hydrazine coordination complex, (2) thermal decomposition of the silica encapsulated nickel-hydrazine complex, (3) treatment of the silica encapsulated nickel-hydrazine complex with sodium borohydride followed by thermal annealing, and (4) electroless nickel plating using silica encapsulated nickel seed particles. We find that only route 1, which does not require a silica template, results in the formation of nickel nanorods, albeit some particle aggregation is observed. Routes 2 and 3 result in the formation of isotropic nickel structures under a reducing atmosphere. Route 4 results in heterogeneous nucleation and growth of existing particles only when partial etching of the silica capsule occurs. Detailed examination of the encapsulated nickel particles allows studying the effect of silica surface silanols on the oxidation of encapsulated nickel particles, the presence of nanoparticle-silica support interactions, the sintering mechanism of nickel and nickel oxide particles, and the fate of boride impurities. Nickel/silica nanostructures are strongly magnetic at room temperature
Super-Resolution Mapping of Photogenerated Electron and Hole Separation in Single Metal−Semiconductor Nanocatalysts
Metal-semiconductor heterostructures are promising visible light photocatalysts for many chemical reactions. Here, we use high-resolution superlocalization imaging to reveal the nature and photocatalytic properties of the surface reactive sites on single Au-CdS hybrid nanocatalysts. We experimentally reveal two distinct, incident energy-dependent charge separation mechanisms that result in completely opposite photogenerated reactive sites (e- and h+) and divergent energy flows on the hybrid nanocatalysts. We find that plasmon-induced hot electrons in Au are injected into the conduction band of the CdS semiconductor nanorod. The specifically designed Au-tipped CdS heterostructures with a unique geometry (two Au nanoparticles at both ends of each CdS nanorod) provide more convincing high-resolution single-turnover mapping results and clearly prove the two charge separation mechanisms. Engineering the direction of energy flow at the nanoscale can provide an efficient way to overcome important challenges in photocatalysis, such as controlling catalytic activity and selectivity. These results bear enormous potential impact on the development of better visible light photocatalysts for solar-to-chemical energy conversion
Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area
Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals
Photochemical methods facilitate the generation, isolation, and study of metastable nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess enhanced and unprecedented chemical, electromagnetic, and catalytic properties. We report a fast, low-temperature and scalable photochemical route to synthesize very small (~3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3) 5Cl]Cl2, under acidic or neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments showed that the reaction proceeds at competent rates only in the presence of light, does not involve a free radical mechanism, is insensitive to O 2, and proceeds in two steps: (1) Aquation of [Co(NH3) 5Cl] 2+ to yield [Co(NH3) 5(H2O)] 3+, followed by (2) slow photoinduced release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form but fast enough so that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more slowly and produces much larger (~250 nm) polydisperse Co(O)OH aggregates. UV-Vis absorption measurements and ab initio calculations yield a Co(O)OH band gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows that oxyhydroxide to mixed-oxide phase transition occurs at significantly lower temperatures (up to T = 64 degrees C) for small nanocrystals compared with the bulk
Malaria eradication: the economic, financial and institutional challenge
Malaria eradication raises many economic, financial and institutional challenges. This paper reviews these challenges, drawing on evidence from previous efforts to eradicate malaria, with a special focus on resource-poor settings; summarizes more recent evidence on the challenges, drawing on the literature on the difficulties of scaling-up malaria control and strengthening health systems more broadly; and explores the implications of these bodies of evidence for the current call for elimination and intensified control
Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals
Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange
- …