310 research outputs found

    Expert Consensus Recommendations for the Suspicion and Diagnosis of Transthyretin Cardiac Amyloidosis

    Get PDF
    Cardiomyopathy is a manifestation of transthyretin amyloidosis (ATTR), which is an underrecognized systemic disease whereby the transthyretin protein misfolds to form fibrils that deposit in various tissues and organs. ATTR amyloidosis is debilitating and associated with poor life expectancy, especially in those with cardiac dysfunction, but a variety of treatment options have recently become available. Considered a rare disease, ATTR amyloidosis may be more prevalent than thought, particularly in older persons. Diagnosis is often delayed because of a lack of disease awareness and the heterogeneity of symptoms at presentation. Given the recent availability of effective treatments, early recognition and diagnosis are especially critical because treatment is likely more effective earlier in the disease course. The Amyloidosis Research Consortium recently convened a group of experts in ATTR amyloidosis who, through an iterative process, agreed on best practices for suspicion, diagnosis, and characterization of disease. This review describes these consensus recommendations for ATTR associated with cardiomyopathy as a resource to aid cardiologists and others in the recognition and diagnosis of ATTR associated with cardiomyopathy. Included in this review is an overview of red flag signs and symptoms and a recommended diagnostic approach, including testing for monoclonal protein, scintigraphy, or biopsy and, if ATTR associated with cardiomyopathy is identified, TTR genotyping

    Bio-optical Properties of Cyanobacteria Blooms in Western Lake Erie

    Get PDF
    There is a growing use of remote sensing observations for detecting and quantifying freshwater cyanobacteria populations, yet the inherent optical properties of these communities in natural settings, fundamental to bio-optical algorithms, are not well known. Toward bridging this knowledge gap, we measured a full complement of optical properties in western Lake Erie during cyanobacteria blooms in the summers of 2013 and 2014. Our measurements focus attention on the optical uniqueness of cyanobacteria blooms, which have consequences for remote sensing and bio-optical modeling. We found the cyanobacteria blooms in the western basin during our field work were dominated by Microcystis, while the waters in the adjacent central basin were dominated by Planktothrix. Chlorophyll concentrations ranged from 1 to over 135 μg/L across the study area with the highest concentrations associated with Microcystis in the western basin. We observed large, amorphous colonial Microcystis structures in the bloom area characterized by high phytoplankton absorption and high scattering coefficients with a mean particle backscatter ratio at 443 nm \u3e 0.03, which is higher than other plankton types and more comparable to suspended inorganic sediments. While our samples contained mixtures of both, our analysis suggests high contributions to the measured scatter and backscatter coefficients from cyanobacteria. Our measurements provide new insights into the optical properties of cyanobacteria blooms, and indicate that current semi-analytic models are likely to have problems resolving a closed solution in these types of waters as many of our observations are beyond the range of existing model components. We believe that different algorithm or model approaches are needed for these conditions, specifically for phytoplankton absorption and particle backscatter components. From a remote sensing perspective, this presents a challenge not only in terms of a need for new algorithms, but also for determining when to apply the best algorithm for a given situation. These results are new in the sense that they represent a complete description of the optical properties of freshwater cyanobacteria blooms, and are likely to be representative of bloom conditions for other systems containing Microcystis cells and colonies

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2—Diagnostic criteria and appropriate utilization

    Get PDF
    Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 1 of 2—evidence base and standardized methods of imaging

    Get PDF
    Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Due to the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1-3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 While advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides non-invasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 2 of 2—Diagnostic Criteria and Appropriate Utilization

    Get PDF
    Cardiac amyloidosis is emerging as an underdiagnosed cause of heart failure and mortality. Growing literature suggests that a noninvasive diagnosis of cardiac amyloidosis is now feasible. However, the diagnostic criteria and utilization of imaging in cardiac amyloidosis are not standardized. In this paper, Part 2 of a series, a panel of international experts from multiple societies define the diagnostic criteria for cardiac amyloidosis and appropriate utilization of echocardiography, cardiovascular magnetic resonance imaging, and radionuclide imaging in the evaluation of patients with known or suspected cardiac amyloidosis

    ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging

    Get PDF
    Cardiac amyloidosis is a form of restrictive infiltrative cardiomyopathy that confers significant mortality. Because of the relative rarity of cardiac amyloidosis, clinical and diagnostic expertise in the recognition and evaluation of individuals with suspected amyloidosis is mostly limited to a few expert centers. Electrocardiography, echocardiography, and radionuclide imaging have been used for the evaluation of cardiac amyloidosis for over 40 years.1, 2, 3 Although cardiovascular magnetic resonance (CMR) has also been in clinical practice for several decades, it was not applied to cardiac amyloidosis until the late 1990s. Despite an abundance of diagnostic imaging options, cardiac amyloidosis remains largely underrecognized or delayed in diagnosis.4 Although advanced imaging options for noninvasive evaluation have substantially expanded, the evidence is predominately confined to single-center small studies or limited multicenter larger experiences, and there continues to be no clear consensus on standardized imaging pathways in cardiac amyloidosis. This lack of guidance is particularly problematic given that there are numerous emerging therapeutic options for this morbid disease, increasing the importance of accurate recognition at earlier stages. Imaging provides noninvasive tools for follow-up of disease remission/progression complementing clinical evaluation. Additional areas not defined include appropriate clinical indications for imaging, optimal imaging utilization by clinical presentation, accepted imaging methods, accurate image interpretation, and comprehensive and clear reporting. Prospective randomized clinical trial data for the diagnosis of amyloidosis and for imaging-based strategies for treatment are not available. A consensus of expert opinion is greatly needed to guide the appropriate clinical utilization of imaging in cardiac amyloidosis

    Early response predicts subsequent response to olanzapine long-acting injection in a randomized, double-blind clinical trial of treatment for schizophrenia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In patients with schizophrenia, early non-response to oral antipsychotic therapy robustly predicts subsequent non-response to continued treatment with the same medication. This study assessed whether early response predicted later response when using a long-acting injection (LAI) antipsychotic.</p> <p>Methods</p> <p>Data were taken from an 8-week, randomized, double-blind, placebo-controlled study of olanzapine LAI in acutely ill patients with schizophrenia (n = 233). Early response was defined as ≥30% improvement from baseline to Week 4 in Positive and Negative Syndrome Scale (PANSS<sub>0-6</sub>) Total score. Subsequent response was defined as ≥40% baseline-to-endpoint improvement in PANSS<sub>0-6 </sub>Total score. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and predictive accuracy were calculated. Clinical and functional outcomes were compared between Early Responders and Early Non-responders.</p> <p>Results</p> <p>Early response/non-response to olanzapine LAI predicted later response/non-response with high sensitivity (85%), specificity (72%), PPV (78%), NPV (80%), and overall accuracy (79%). Compared to Early Non-responders, Early Responders had significantly greater improvement in PANSS<sub>0-6 </sub>Total scores at all time points and greater baseline-to-endpoint improvement in PANSS subscale scores, Quality of Life Scale scores, and Short Form-36 Health Survey scores (all p ≤ .01). Among Early Non-responders, 20% demonstrated response by Week 8. Patients who lacked early improvement (at Week 4) in Negative Symptoms and Disorganized Thoughts were more likely to continue being non-responders at Week 8.</p> <p>Conclusions</p> <p>Among acutely ill patients with schizophrenia, early response predicted subsequent response to olanzapine LAI. Early Responders experienced significantly better clinical and functional outcomes than Early Non-responders. Findings are consistent with previous research on oral antipsychotics.</p> <p>Clinical Trials Registry</p> <p>F1D-MC-HGJZ: Comparison of Intramuscular Olanzapine Depot With Placebo in the Treatment of Patients With Schizophrenia <url>http://clinicaltrials.gov/ct2/show/NCT00088478?term=olanzapine+depot&rank=3</url></p> <p>Registry identifier - <a href="http://www.clinicaltrials.gov/ct2/show/NCT00088478">NCT00088478</a></p
    • …
    corecore