423 research outputs found

    GOVERNMENT PATENTING AND TECHNOLOGY TRANSFER

    Get PDF
    Intellectual property rights such as patents protect new inventions from imitation and competition. Patents' major objective is to provide incentives for invention, sacrificing short-term market efficiency for long-term economic gains. Although patents are primarily granted to private firms, policy changes over the last 25 years have resulted in greater use of patenting by the public sector. This study examines government patenting behavior by analyzing case studies of patenting and licensing by the Agricultural Research Service (ARS) of the U.S. Department of Agriculture. ARS uses patenting and licensing as a means of technology transfer in cases in which a technology requires additional development by a private sector partner to yield a marketable product. Licensing revenue is not a major motivation for ARS patenting. More widespread use of patenting and licensing by ARS has not reduced the use of traditional instruments of technology transfer such as scientific publication. Once the decision has been made to patent and license a technology, the structure of the licensing agreement affects technology transfer outcomes. As commercial partners gain experience with the technology and learn more about the market, mutually advantageous revisions to license terms can maintain the incentives through which private companies distribute the benefits of public research.patents, licenses, intellectual property rights, technology transfer, Agricultural Research Service, agricultural research and development, Research and Development/Tech Change/Emerging Technologies,

    Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus

    Get PDF
    The prosomeric model proposes that the hypothalamus is a rostral forebrain entity, placed ventral to the telencephalon and rostral to the diencephalon. Gene expression markers differentially label molecularly distinct dorsoventral progenitor domains, which represent continuous longitudinal bands across the hypothalamic alar and basal regions. There is also circumstantial support for a rostrocaudal subdivision of the hypothalamus into transverse peduncular (caudal) and terminal (rostral) territories (PHy, THy). In addition, there is evidence for a specialized acroterminal domain at the rostral midline of the terminal hypothalamus (ATD). The PHy and THy transverse structural units are presently held to form part of two hypothalamo-telencephalic prosomeres (hp1 and hp2, respectively), which end dorsally at the telencephalic septocommissural roof. PHy and THy have distinct adult nuclei, at all dorsoventral levels. Here we report the results of data mining from the Allen Developing Mouse Brain Atlas database, looking for genes expressed differentially in the PHy, THy and ATD regions of the hypothalamus at several developmental stages. This search allowed us to identify additional molecular evidence supporting the postulated fundamental rostrocaudal bipartition of the mouse hypothalamus into the PHy and THy, and also corroborated molecularly the singularity of the ATD. A number of markers were expressed in Thy (Fgf15, Gsc, Nkx6.2, Otx1, Zic1/5), but were absent in PHy, while other genes showed the converse pattern (Erbb4, Irx1/3/5, Lmo4, Mfap4, Plagl1, Pmch). We also identified markers that selectively label the ATD (Fgf8/10/18, Otx2, Pomc, Rax, Six6). On the whole, these data help to explain why, irrespective of the observed continuity of all dorsoventral molecular hypothalamic subdivisions across PHy and THy, different nuclear structures originate within each of these two domains, and also why singular structures arise at the ATD, e.g., the suprachiasmatic nuclei, the

    Assessing the Benefits of Public Research Within an Economic Framework: The Case of USDA's Agricultural Research Service

    Get PDF
    Evaluation of publicly funded research can help provide accountability and prioritize programs. In addition, Federal intramural research planning generally involves an institutional assessment of the appropriate Federal role, if any, and whether the research should be left to others, such as universities or the private sector. Many methods of evaluation are available, peer review—used primarily for establishing scientific merit—being the most common. Economic analysis focuses on quantifying ultimate research outcomes, whether measured in goods with market prices or in nonmarket goods such as environmental quality or human health. However, standard economic techniques may not be amenable for evaluating some important public research priorities or for institutional assessments. This report reviews quantitative methods and applies qualitative economic reasoning and stakeholder interviewing methods to the evaluation of economic benefits of Federal intramural research using three case studies of research conducted by USDA’s Agricultural Research Service (ARS). Differences among the case studies highlight the need to select suitable assessment techniques from available methodologies, the limited scope for comparing assessment results across programs, and the inherent difficulty in quantifying benefits in some research areas. When measurement and attribution issues make it difficult to quantify these benefits, the report discusses how qualitative insights based on economic concepts can help research prioritization.Agricultural Research Service, Federal intramural research, publicly funded research, Environmental Economics and Policy, Food Consumption/Nutrition/Food Safety, Livestock Production/Industries, Productivity Analysis,

    Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types.

    Get PDF
    Many subtypes of cortical interneurons (CINs) are found in adult mouse cortices, but the mechanism generating their diversity remains elusive. We performed single-cell RNA sequencing on the mouse embryonic medial ganglionic eminence (MGE), the major birthplace for CINs, and on MGE-like cells differentiated from embryonic stem cells. Two distinct cell types were identified as proliferating neural progenitors and immature neurons, both of which comprised sub-populations. Although lineage development of MGE progenitors was reconstructed and immature neurons were characterized as GABAergic, cells that might correspond to precursors of different CINs were not identified. A few non-neuronal cell types were detected, including microglia. In vitro MGE-like cells resembled bona fide MGE cells but expressed lower levels of Foxg1 and Epha4. Together, our data provide detailed understanding of the embryonic MGE developmental program and suggest how CINs are specified

    Research Investments and Market Structure in the Food Processing, Agricultural Input, and Biofuel Industries Worldwide

    Get PDF
    Meeting growing global demand for food, fiber, and biofuel requires robust investment in agricultural research and development (R&D) from both public and private sectors. This study examines global R&D spending by private industry in seven agricultural input sectors, food manufacturing, and biofuel and describes the changing structure of these industries. In 2007 (the latest year for which comprehensive estimates are available), the private sector spent 19.7 billion on food and agricultural research (56 percent in food manufacturing and 44 percent in agricultural input sectors) and accounted for about half of total public and private spending on food and agricultural R&D in high-income countries. In R&D related to biofuel, annual private-sector investments are estimated to have reached 1.47 billion worldwide by 2009. Incentives to invest in R&D are influenced by market structure and other factors. Agricultural input industries have undergone significant structural change over the past two decades, with industry concentration on the rise. A relatively small number of large, multinational firms with global R&D and marketing networks account for most R&D in each input industry. Rising market concentration has not generally been associated with increased R&D investment as a percentage of industry sales.agricultural biotechnology, agricultural chemicals, agricultural inputs, animal breeding, animal health, animal nutrition, aquaculture, biofuel, concentration ratio, crop breeding, crop protection, farm machinery, fertilizers, Herfindahl index, globalization, market share, market structure, research intensity, seed improvement, Productivity Analysis,

    Multiple conserved regulatory domains promote Fezf2 expression in the developing cerebral cortex.

    Get PDF
    BackgroundThe genetic programs required for development of the cerebral cortex are under intense investigation. However, non-coding DNA elements that control the expression of developmentally important genes remain poorly defined. Here we investigate the regulation of Fezf2, a transcription factor that is necessary for the generation of deep-layer cortical projection neurons.ResultsUsing a combination of chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq) we mapped the binding of four deep-layer-enriched transcription factors previously shown to be important for cortical development. Building upon this we characterized the activity of three regulatory regions around the Fezf2 locus at multiple stages throughout corticogenesis. We identified a promoter that was sufficient for expression in the cerebral cortex, and enhancers that drove reporter gene expression in distinct forebrain domains, including progenitor cells and cortical projection neurons.ConclusionsThese results provide insight into the regulatory logic controlling Fezf2 expression and further the understanding of how multiple non-coding regulatory domains can collaborate to control gene expression in vivo
    corecore