47 research outputs found

    T-Brain-1: A homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex

    Get PDF
    AbstractThe mechanisms that regulate regional specification and evolution of the cerebral cortex are obscure. To this end, we have identified and characterized a novel murine and human gene encoding a putative transcription factor related to the Brachyury (T) gene that is expressed only in postmitotic cells. T-brain-1 (Tbr-1) mRNA is largely restricted to the cerebral cortex, where during embryogenesis it distinguishes domains that we propose may give rise to paleocortex, limbic cortex, and neocortex. Tbr-1 and Id-2 expression in the neocortex have discontinuities that define molecularly distinct neocortical areas. Tbr-1 expression is analyzed in the context of the prosomeric model. Topological maps are proposed for the organization of the dorsal telencephalon

    Pbx Regulates Patterning of the Cerebral Cortex in Progenitors and Postmitotic Neurons

    Get PDF
    SummaryWe demonstrate using conditional mutagenesis that Pbx1, with and without Pbx2+/− sensitization, regulates regional identity and laminar patterning of the developing mouse neocortex in cortical progenitors (Emx1-Cre) and in newly generated neurons (Nex1-Cre). Pbx1/2 mutants have three salient molecular phenotypes of cortical regional and laminar organization: hypoplasia of the frontal cortex, ventral expansion of the dorsomedial cortex, and ventral expansion of Reelin expression in the cortical plate of the frontal cortex, concomitant with an inversion of cortical layering in the rostral cortex. Molecular analyses, including PBX ChIP-seq, provide evidence that PBX promotes frontal cortex identity by repressing genes that promote dorsocaudal fate

    Tbr1 Regulates Differentiation of the Preplate and Layer 6

    Get PDF
    AbstractDuring corticogenesis, early-born neurons of the preplate and layer 6 are important for guiding subsequent neuronal migrations and axonal projections. Tbr1 is a putative transcription factor that is highly expressed in glutamatergic early-born cortical neurons. In Tbr1-deficient mice, these early-born neurons had molecular and functional defects. Cajal-Retzius cells expressed decreased levels of Reelin, resulting in a reeler-like cortical migration disorder. Impaired subplate differentiation was associated with ectopic projection of thalamocortical fibers into the basal telencephalon. Layer 6 defects contributed to errors in the thalamocortical, corticothalamic, and callosal projections. These results show that Tbr1 is a common genetic determinant for the differentiation of early-born glutamatergic neocortical neurons and provide insights into the functions of these neurons as regulators of cortical development

    Transcriptional Regulation of Enhancers Active in Protodomains of the Developing Cerebral Cortex

    Get PDF
    SummaryElucidating the genetic control of cerebral cortical (pallial) development is essential for understanding function, evolution, and disorders of the brain. Transcription factors (TFs) that embryonically regulate pallial regionalization are expressed in gradients, raising the question of how discrete domains are generated. We provide evidence that small enhancer elements active in protodomains integrate broad transcriptional information. CreERT2 and GFP expression from 14 different enhancer elements in stable transgenic mice allowed us to define a comprehensive regional fate map of the pallium. We explored transcriptional mechanisms that control the activity of the enhancers using informatics, in vivo occupancy by TFs that regulate cortical patterning (CoupTFI, Pax6, and Pbx1), and analysis of enhancer activity in Pax6 mutants. Overall, the results provide insights into how broadly expressed patterning TFs regulate the activity of small enhancer elements that drive gene expression in pallial protodomains that fate map to distinct cortical regions

    Differential Regulation of Microtubule Severing by APC Underlies Distinct Patterns of Projection Neuron and Interneuron Migration

    Get PDF
    Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. Two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial vs. tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex

    Autism and Brain Development

    Get PDF
    Genetic studies are refining our understanding of neurodevelopmental mechanisms in autism. Some autism-related mutations appear to disrupt genes regulated by neuronal activity, which are especially important in development of the postnatal nervous system. Gene replacement studies in mice indicate that the developmental window to ameliorate symptoms may be wider than previously anticipated

    OTX2 Transcription Factor Controls Regional Patterning within the Medial Ganglionic Eminence and Regional Identity of the Septum

    No full text
    The Otx2 homeodomain transcription factor is essential for gastrulation and early neural development. We generated Otx2 conditional knockout (cKO) mice to investigate its roles in telencephalon development after neurulation (approximately embryonic day 9.0). We conducted transcriptional profiling and in situ hybridization to identify genes de-regulated in Otx2 cKO ventral forebrain. In parallel, we used chromatin immunoprecipitation sequencing to identify enhancer elements, the OTX2 binding motif, and de-regulated genes that are likely direct targets of OTX2 transcriptional regulation. We found that Otx2 was essential in septum specification, regulation of Fgf signaling in the rostral telencephalon, and medial ganglionic eminence (MGE) patterning, neurogenesis, and oligodendrogenesis. Within the MGE, Otx2 was required for ventral, but not dorsal, identity, thus controlling the production of specific MGE derivatives

    Patrón de expresión génica e histogénesis en la placa basal del prosencéfalo y mesencéfalo de aves / Eduardo Puelles Martínez de la Torre ; Directores, John L.R. Rubenstein, Salvador Martínez Pérez.

    No full text
    Tesis - Universidad de Murcia.MEDICINA ESPINARDO. DEPOSITO. MU-Tesis 694.Consulte la tesis en: BCA. GENERAL. DEPOSITO. T.M-2132
    corecore