47 research outputs found
An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors
[EN] In this paper, a revised version of the Morris approach, which includes an improved sampling strategy based on trajectory design, has been adapted to the screening of the most influential parameters of a fuzzy controller applied to WWTPs. Due to the high number of parameters, a systematic approach has been proposed to apply this improved sampling strategy with low computational demand. In order to find out the proper repetition number of elementary effects of each input factor on model output (EEi) calculations, an iterative and automatic procedure has been applied. The results show that the sampling strategy has a significant effect on the parameter significance ranking and that random sampling could lead to a non-proper coverage of the parameter space. (C) 2012 Elsevier Ltd. All rights reserved.This research study has been supported by the Spanish Research Foundation (CICYT Project reference CTM2005-06919-C03-01/TECNO), which is gratefully acknowledged.Ruano García, MV.; Ribes, J.; Seco Torrecillas, A.; Ferrer, J. (2012). An improved sampling strategy based on trajectory design for application of the Morris method to systems with many input factors. Environmental Modelling & Software. 37:103-109. https://doi.org/10.1016/j.envsoft.2012.03.008S1031093
A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology
[EN] The aim of this study is to propose a detailed and comprehensive plant-wide model for assessing the energy demand of different wastewater treatment systems (beyond the traditional activated sludge) in both steady- and unsteady-state conditions. The proposed model makes it possible to calculate power and heat requirements (W and Q, respectively), and to recover both power and heat from methane and hydrogen capture. In order to account for the effect of biological processes on heat requirements, the model has been coupled to the extended version of the BNRM2 plant-wide mathematical model, which is implemented in DESSAS simulation software. Two case studies have been evaluated to assess the model's performance: (1) modelling the energy demand of two urban wastewater treatment plants based on conventional activated sludge and submerged anaerobic membrane bioreactor (AnMBR) technologies in steady-state conditions and (2) modelling the dynamics of reactor temperature and heat requirements in an AnMBR plant in unsteady-state conditions. The results indicate that the proposed model can be used to assess the energy performance of different wastewater treatment processes and would thus be useful, for example, WWTP design or upgrading or the development of new control strategies for energy savings.This research work has been supported by the Spanish Ministry of Science and Innovation [MICINN, Project CTM2011-28595-C02-01/02] jointly with the European Regional Development Fund (ERDF).Pretel-Jolis, R.; Robles Martínez, Á.; Ruano García, MV.; Seco, A.; Ferrer, J. (2016). A plant-wide energy model for wastewater treatment plants: application to anaerobic membrane bioreactor technology. Environmental Technology. 37(18):2298-2315. https://doi.org/10.1080/09593330.2016.1148903S229823153718Olsson, G., Carlsson, B., Comas, J., Copp, J., Gernaey, K. V., Ingildsen, P., … Åmand, L. (2014). Instrumentation, control and automation in wastewater – from London 1973 to Narbonne 2013. Water Science and Technology, 69(7), 1373-1385. doi:10.2166/wst.2014.057Nicolae, B., & George-Vlad, B. (2015). Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85. doi:10.1016/j.enbuild.2014.10.021Corominas, L., Foley, J., Guest, J. S., Hospido, A., Larsen, H. F., Morera, S., & Shaw, A. (2013). Life cycle assessment applied to wastewater treatment: State of the art. Water Research, 47(15), 5480-5492. doi:10.1016/j.watres.2013.06.049Bauer, A., Bösch, P., Friedl, A., & Amon, T. (2009). Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 142(1), 50-55. doi:10.1016/j.jbiotec.2009.01.017Venkatesh, G., & Elmi, R. A. (2013). Economic–environmental analysis of handling biogas from sewage sludge digesters in WWTPs (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway). Energy, 58, 220-235. doi:10.1016/j.energy.2013.05.025EPA (Environmental Protection Agency). Combined Heat and Power Partnership. Agency of the United States federal government; 2015.Descoins, N., Deleris, S., Lestienne, R., Trouvé, E., & Maréchal, F. (2012). Energy efficiency in waste water treatments plants: Optimization of activated sludge process coupled with anaerobic digestion. Energy, 41(1), 153-164. doi:10.1016/j.energy.2011.03.078Gernaey, K. V., van Loosdrecht, M. C. ., Henze, M., Lind, M., & Jørgensen, S. B. (2004). Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environmental Modelling & Software, 19(9), 763-783. doi:10.1016/j.envsoft.2003.03.005Ferrer, J., Seco, A., Serralta, J., Ribes, J., Manga, J., Asensi, E., … Llavador, F. (2008). DESASS: A software tool for designing, simulating and optimising WWTPs. Environmental Modelling & Software, 23(1), 19-26. doi:10.1016/j.envsoft.2007.04.005Bozkurt, H., Quaglia, A., Gernaey, K. V., & Sin, G. (2015). A mathematical programming framework for early stage design of wastewater treatment plants. Environmental Modelling & Software, 64, 164-176. doi:10.1016/j.envsoft.2014.11.023Jeppsson, U., Rosen, C., Alex, J., Copp, J., Gernaey, K. V., Pons, M.-N., & Vanrolleghem, P. A. (2006). Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs. Water Science and Technology, 53(1), 287-295. doi:10.2166/wst.2006.031Gomez, J., de Gracia, M., Ayesa, E., & Garcia-Heras, J. L. (2007). Mathematical modelling of autothermal thermophilic aerobic digesters. Water Research, 41(5), 959-968. doi:10.1016/j.watres.2006.11.042Righi, S., Oliviero, L., Pedrini, M., Buscaroli, A., & Della Casa, C. (2013). Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches. Journal of Cleaner Production, 44, 8-17. doi:10.1016/j.jclepro.2012.12.004Lemos, D., Dias, A. C., Gabarrell, X., & Arroja, L. (2013). Environmental assessment of an urban water system. Journal of Cleaner Production, 54, 157-165. doi:10.1016/j.jclepro.2013.04.029Nowak, O., Enderle, P., & Varbanov, P. (2015). Ways to optimize the energy balance of municipal wastewater systems: lessons learned from Austrian applications. Journal of Cleaner Production, 88, 125-131. doi:10.1016/j.jclepro.2014.08.068Tous M, Ladislav B, Houdková L, Pavlas M, Stehlík P. Waste-to energy (W2E) software – a support tool for decision making process. Brno University of Technology, Institute of Process and Environmental Engineering, Chemical Engineering Transactions, Volume 18; 2009.Pijáková, I. (2015). Application of Dynamic Simulations for Assessment of Urban Wastewater Systems Operation. Chemical and Biochemical Engineering Quarterly Journal, 29(1), 55-62. doi:10.15255/cabeq.2014.2127McCarty, P. L., Bae, J., & Kim, J. (2011). Domestic Wastewater Treatment as a Net Energy Producer–Can This be Achieved? Environmental Science & Technology, 45(17), 7100-7106. doi:10.1021/es2014264Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Smith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., & Skerlos, S. J. (2014). Navigating Wastewater Energy Recovery Strategies: A Life Cycle Comparison of Anaerobic Membrane Bioreactor and Conventional Treatment Systems with Anaerobic Digestion. Environmental Science & Technology, 48(10), 5972-5981. doi:10.1021/es5006169Barat, R., Serralta, J., Ruano, M. V., Jiménez, E., Ribes, J., Seco, A., & Ferrer, J. (2013). Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants. Water Science and Technology, 67(7), 1481-1489. doi:10.2166/wst.2013.004Durán F. Mathematical modelling of the anaerobic urban wastewater treatment including sulphate-reducing bacteria. Application to an anaerobic membrane bioreactor (Modelación matemática del tratamiento anaerobio de aguas residuales urbanas incluyendo las bacterias sulfatorreductoras, Aplicación a un biorreactor anaerobio de membranas), Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat Politècnica de València, Spain; 2013.Pretel, R., Robles, A., Ruano, M. V., Seco, A., & Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology, 149, 532-540. doi:10.1016/j.biortech.2013.09.060Gillot, S., & Vanrolleghem, P. A. (2003). Equilibrium temperature in aerated basins—comparison of two prediction models. Water Research, 37(15), 3742-3748. doi:10.1016/s0043-1354(03)00263-xEPA. Catalog of Biomass Combined Heat and Power Catalog of Technologies; 2007 [cited 2015 May 5] Available from: http://www.epa.gov/chp/documents/biomass_chp_catalog.pdf.PSE Probiogas. Development of sustainable systems of biogas production and use in Spain. Funded by the Ministry of science and innovation. Spanish government, Madrid; 2010 [cited 2012 May 5] http://213.229.136.11/bases/ainia_probiogas.nsf/0/F9F832A77BF0CA25C125753F0058C4B2/$FILE/Cap2.pdf.Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009Chanona, J., Ribes, J., Seco, A., & Ferrer, J. (2006). Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production. Water Research, 40(1), 53-60. doi:10.1016/j.watres.2005.10.020Gatti MN. Characterization of wastewaters and calibration of the mathematical model BNRM1 for simulation of the biological removal process of organic matter and nutrients (Caracterización de las aguas residuales y calibración del modelo matemático BNRM1 para la simulación de los procesos de eliminación biológica de materia orgánica y nutrientes). Ph.D. thesis, Dept. of Hydraulic Engineering and Environment, Universitat de València, Spain; 2009.Ruano, M. V., Serralta, J., Ribes, J., Garcia-Usach, F., Bouzas, A., Barat, R., … Ferrer, J. (2012). Application of the general model ‘Biological Nutrient Removal Model No. 1’ to upgrade two full-scale WWTPs. Environmental Technology, 33(9), 1005-1012. doi:10.1080/09593330.2011.604877Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018AEMET. State Meteorological Agency (Agencia Estatal de Meteorología). Register of hourly and daily average ambient temperature from 2010 to 2014 located in Valencia; 2015
Economic and environmental sustainability of submerged anaerobic MBR based (AnMBR-based) technology compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment
[EN] The objective of this study was to assess the economic and environmental sustainability of submerged anaerobic membrane bioreactors (AnMBRs) in comparison with aerobic-based technologies for moderate-/high-loaded urban wastewater (UWW) treatment. To this aim, a combined approach of steady-state performance modelling, life cycle analysis (LCA) and life cycle costing (LCC) was used, in which AnMBR (coupled with an aerobic-based post-treatment) was compared to aerobic membrane bioreactor (AeMBR) and conventional activated sludge (CAS). AnMBR with CAS-based post-treatment for nutrient removal was identified as a sustainable option for moderate-/high-loaded UWW treatment: low energy consumption and reduced sludge production could be obtained at given operating conditions. In addition, significant reductions can be achieved in different aspects of environmental impact (global warming potential (GWP), abiotic depletion, acidification, etc.) and LCC over existing UWW treatment technologies.Pretel, R.; Robles Martínez, Á.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2016). Economic and environmental sustainability of submerged anaerobic MBR based (AnMBR-based) technology compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management. 166:45-54. https://doi.org/10.1016/j.jenvman.2015.10.004S455416
Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures
[EN] The objective of this study was to assess the environmental impact of a submerged anaerobic MBR (SAnMBR) system in the treatment of urban wastewater at different temperatures: ambient temperature (20 and 33 degrees C), and a controlled temperature (33 degrees C). To this end, an overall energy balance (OEB) and life cycle assessment (LCA), both based on real process data, were carried out. Four factors were considered in this study; (1) energy consumption during wastewater treatment; (2) energy recovered from biogas capture; (3) potential recovery of nutrients from the final effluent; and (4) sludge disposal. The OEB and LCA showed SAnMBR to be a promising technology for treating urban wastewater at ambient temperature (OEB = 0.19 kW h m(-3)). LCA results reinforce the importance of maximising the recovery of nutrients (environmental impact in eutrophication can be reduced up to 45%) and dissolved methane (positive environmental impact can be obtained) from SAnMBR effluent. (C) 2013 Elsevier Ltd. All rights reserved.This research work has been supported by the Spanish Ministry of Science and Innovation (MICINN, Project CTM2011-28595-CO2-01/02) jointly with the European Regional Development Fund (ERDF) which are gratefully acknowledged.Pretel, R.; Robles Martínez, Á.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2013). Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Bioresource Technology. 149:532-540. https://doi.org/10.1016/j.biortech.2013.09.060S53254014
Real-time optimization of the key filtration parameters in an AnMBR: Urban wastewater mono-digestion vs. co-digestion with domestic food waste
[EN] This study describes a model-based method for real-time optimization of the key filtration parameters in a submerged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and UWW mixed with domestic food waste (FW). The method consists of an initial screening to find out adequate filtration conditions and a real-time optimizer applied to a periodically calibrated filtration model for minimizing the operating costs. The initial screening consists of two statistical analyses: (1) Morris screening method to identify the key filtration parameters; (2) Monte Carlo method to establish suitable initial control inputs values. The operating filtration cost after implementing the control methodology was (sic)0.047 per m(3) (59.6% corresponding to energy costs) when treating UWW and 0.067 per m(3) when adding FW due to higher fouling rates. However, FW increased the biogas productivities, reducing the total costs to (sic)0.035 per m(3). Average downtimes for reversible fouling removal of 0.4% and 1.6% were obtained, respectively. The results confirm the capability of the proposed control system for optimizing the AnMBR performance when treating both substrates. (C) 2018 Elsevier Ltd. All rights reserved.This research work was possible thanks to financial support from Generalitat Valenciana (project PROMETEO/2012/029) which is gratefully acknowledged. Besides, support from FCC Aqualia participation in INNPRONTA 2011 IISIS IPT-20111023 project (partially funded by The Centre for Industrial Technological Development (CDTI) and from the Spanish Ministry of Economy and Competitiveness) is gratefully acknowledged.Robles Martínez, Á.; Capson-Tojo, G.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2018). Real-time optimization of the key filtration parameters in an AnMBR:
Urban wastewater mono-digestion vs. co-digestion with domestic food
waste. Waste Management. 80:299-309. https://doi.org/10.1016/j.wasman.2018.09.031S2993098
Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR)
This paper describes a model-based method to optimise filtration in submerged AnMBRs. The method is applied to an advanced knowledge-based control system and considers three statistical methods: (1) sensitivity analysis (Morris screening method) to identify an input subset for the advanced controller; (2) Monte Carlo method (trajectory-based random sampling) to find suitable initial values for the control inputs; and (3) optimisation algorithm (performing as a supervisory controller) to re-calibrate these control inputs in order to minimise plant operating costs. The model-based supervisory controller proposed allowed filtration to be optimised with low computational demands (about 5min). Energy savings of up to 25% were achieved when using gas sparging to scour membranes. Downtime for physical cleaning was about 2.4% of operating time. The operating cost of the AnMBR system after implementing the proposed supervisory controller was about 0.045/m3, 53.3% of which were energy costs.This research work has been supported by the Spanish Ministry of Science and Innovation (MICINN, Projects CTM2008-06809CO2-01/02 and FPI grant BES-2009-023712) and the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM2011-28595-0O2-01/02), jointly with the European Regional Development Fund (ERDF) and Generalitat Valenciana GVAACOMP2013/203, which are gratefully acknowledged.Robles Martínez, Á.; Ruano García, MV.; Ribes Bertomeu, J.; Seco Torrecillas, A.; Ferrer, J. (2014). Model-based automatic tuning of a filtration control system for submerged anaerobic membrane bioreactors (AnMBR). Journal of Membrane Science. 465:14-26. https://doi.org/10.1016/j.memsci.2014.04.012S142646
Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment
[EN] The objective of this study was to evaluate the effect of the main factors affecting the cost of the filtration process in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater (UWW) treatment. Experimental data for CAPEX/OPEX calculations was obtained in an AnMBR system featuring industrial-scale hollow-fiber (HF) membranes. Results showed that operating at J(20) slightly higher than the critical flux results in minimum CAPEX/OPEX. The minimum filtration process cost ranged from Euro0.03 to Euro0.12 per m(3), mainly depending on SGD(m) (from 0.05 to 0.3 m(3)m(-2)h(-1)) and MLSS (from 5 to 25 gL-1). The optimal SGD(m) resulted in approx. 0.1 m(3)m(-2)h(-1).This research work was possible thanks to projects CTM2011-28595-C02-01/02 (funded by the Spanish Ministry of Economy and Competitiveness jointly with the European Regional Development Fund) and FCC Aqualia INNPRONTA IISIS IPT-20111023 (partially funded by the Centre for Industrial Technological Development (CDTI), and supported by the Spanish Ministry of Economy and Competitiveness).Pretel-Jolis, R.; Robles Martínez, Á.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2016). Filtration process cost in submerged anaerobic membrane bioreactors (AnMBRs) for urban wastewater treatment. Separation Science and Technology. 51(3):517-524. https://doi.org/10.1080/01496395.2015.1094092S517524513Lin, H., Chen, J., Wang, F., Ding, L., & Hong, H. (2011). Feasibility evaluation of submerged anaerobic membrane bioreactor for municipal secondary wastewater treatment. Desalination, 280(1-3), 120-126. doi:10.1016/j.desal.2011.06.058Smith, A. L., Skerlos, S. J., & Raskin, L. (2013). Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research, 47(4), 1655-1665. doi:10.1016/j.watres.2012.12.028Ferrer, J., Pretel, R., Durán, F., Giménez, J. B., Robles, A., Ruano, M. V., … Seco, A. (2015). Design methodology for submerged anaerobic membrane bioreactors (AnMBR): A case study. Separation and Purification Technology, 141, 378-386. doi:10.1016/j.seppur.2014.12.018Robles, A.; Ruano, M. V.; García-Usach, F; Ferrer, J. (2012) Sub-critical filtration conditions of commercial hollow-fiber membranes in a submerged anaerobic MBR (HF-SAnMBR) system: The effect of gas sparging intensity.Bioresource Technol. 114: 247–254.Martin Garcia, I., Mokosch, M., Soares, A., Pidou, M., & Jefferson, B. (2013). Impact on reactor configuration on the performance of anaerobic MBRs: Treatment of settled sewage in temperate climates. Water Research, 47(14), 4853-4860. doi:10.1016/j.watres.2013.05.008Lin, H., Peng, W., Zhang, M., Chen, J., Hong, H., & Zhang, Y. (2013). A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives. Desalination, 314, 169-188. doi:10.1016/j.desal.2013.01.019Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014Robles, A., Ruano, M. V., Ribes, J., & Ferrer, J. (2013). Factors that affect the permeability of commercial hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Water Research, 47(3), 1277-1288. doi:10.1016/j.watres.2012.11.055Judd, S. (2008). The status of membrane bioreactor technology. Trends in Biotechnology, 26(2), 109-116. doi:10.1016/j.tibtech.2007.11.005Verrecht, B., Maere, T., Nopens, I., Brepols, C., & Judd, S. (2010). The cost of a large-scale hollow fibre MBR. Water Research, 44(18), 5274-5283. doi:10.1016/j.watres.2010.06.054Gil, J. A., Túa, L., Rueda, A., Montaño, B., Rodríguez, M., & Prats, D. (2010). Monitoring and analysis of the energy cost of an MBR. Desalination, 250(3), 997-1001. doi:10.1016/j.desal.2009.09.089Maere, T., Verrecht, B., Moerenhout, S., Judd, S., & Nopens, I. (2011). BSM-MBR: A benchmark simulation model to compare control and operational strategies for membrane bioreactors. Water Research, 45(6), 2181-2190. doi:10.1016/j.watres.2011.01.006Fenu, A., Roels, J., Wambecq, T., De Gussem, K., Thoeye, C., De Gueldre, G., & Van De Steene, B. (2010). Energy audit of a full scale MBR system. Desalination, 262(1-3), 121-128. doi:10.1016/j.desal.2010.05.057Zhang, K., Wei, P., Yao, M., Field, R. W., & Cui, Z. (2011). Effect of the bubbling regimes on the performance and energy cost of flat sheet MBRs. Desalination, 283, 221-226. doi:10.1016/j.desal.2011.04.02
Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor
The main aim of this work was to study the influence of the mixed liquor total solids (MLTS) concentration on membrane permeability (K 20) in a submerged anaerobic membrane bioreactor (SAnMBR) pilot plant, which is equipped with industrial hollow-fibre membranes and treats urban wastewater. This pilot plant was operated at 33°C and 70 days of SRT. Two different transmembrane fluxes (13.3 and 10 LMH) were tested with a gas sparging intensity of 0.23 Nm 3 m -2 h -1 (measured as Specific Gas Demand referred to membrane area). A linear dependence of K 20 on MLTS concentration was observed within a range of MLTS concentration from 13 to 32 g L -1 and J 20 of 10 LMH. K 20 was maintained at sustainable values (about 100 LMH bar -1) even at high MLTS concentrations (up to 20 g L -1). In addition, several short-tests were carried out when the membranes were operated at high MLTS concentrations in order to assess the effect of the physical cleaning strategies (relaxation and back-flush) on membrane performance. It was observed that, with the applied gas sparging intensity, the duration of the relaxation stage did not critically affect the membrane performance. On the other hand, the required back-flush frequency was considerably affected by the MLTS concentration. © IWA Publishing 2012.This research work has been supported by the Spanish Research Foundation (CICYT Projects CTM2008-06809-C02-01 and CTM2008-06809-C02-02, and MICINN FPI grant BES-2009-023712) and Generalitat Valenciana (Projects GVA-ACOMP2010/130 and GVA-ACOMP2011/182), which are gratefully acknowledged.Robles Martínez, Á.; Durán Pinzón, F.; Ruano García, MV.; Ribes Bertomeu, J.; Ferrer Polo, J. (2012). Influence of total solids concentration on membrane permeability in a submerged hollow-fibre anaerobic membrane bioreactor. Water Science and Technology. 66(2):377-384. doi:10.2166/wst.2012.196S37738466
The value of meta-data for water resource recovery facilities
[EN] Meta-data refers to descriptive information essential to convert large volumes of raw data into useful resources. With the advance of digitalisation in the water sector, it is fundamental to avoid data graveyards and, on the other hand, using collected data to address current and future problems. This white paper focuses on the crucial role that meta-data has in responding to future and possibly unpredictable challenges.
The aim of this document is to present the `meta-data challenge¿ and to highlight the need to consider meta-data when collecting information as part of good digitalisation practices.Aguado García, D.; Blumensaat, F.; Baeza, JA.; Villez, K.; Ruano, MV.; Samuelsson, O.; Plana, Q. (2021). The value of meta-data for water resource recovery facilities. H2Open Journal. 1-15. http://hdl.handle.net/10251/188561S11
Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste
[EN] The objective of this study was to evaluate the economic and environmental sustainability of a sub-
merged anaerobic membrane bioreactor (AnMBR) treating urban wastewater (UWW) and organic fraction of municipal solid waste (OFMSW) at ambient temperature in mild/hot climates. To this aim, power requirements, energy recovery from methane (biogas methane and methane dissolved in the effluent), consumption of reagents for membrane cleaning, and sludge handling (polyelectrolyte and energy consumption) and disposal (farmland, landfilling and incineration) were evaluated within different
operating scenarios. Results showed that, for the operating conditions considered in this study, AnMBR technology is likely to be a net energy producer, resulting in considerable cost savings (up to
V0.023 per m3 of treated water) when treating low-sulphate influent. Life cycle analysis (LCA) results revealed that operating at high sludge retention times (70 days) and treating enhances the overall environmental performance of AnMBR technology.This research work was supported by Generalitat Valenciana (project PROMETEO/2012/029), which is gratefully acknowledged. Besides, financial support from the Spanish Ministry of Education, Culture and Sport via a pre-doctoral FPU grant to the first author (AP-2010-2148) is gratefully acknowledged.Pretel-Jolis, R.; Moñino Amorós, P.; Robles Martínez, Á.; Ruano García, MV.; Seco Torrecillas, A.; Ferrer, J. (2016). Economic and environmental sustainability of an AnMBR treating urban wastewater and organic fraction of municipal solid waste. Journal of Environmental Management. 179:83-92. https://doi.org/10.1016/j.jenvman.2016.04.057S839217