21 research outputs found

    Neuroinflammation alters cellular proteostasis by producing endoplasmic reticulum stress, autophagy activation and disrupting ERAD activation

    Get PDF
    Proteostasis alteration and neuroinflammation are typical features of normal aging. We have previously shown that neuroinflammation alters cellular proteostasis through immunoproteasome induction, leading to a transient decrease of proteasome activity. Here, we further investigated the role of acute lipopolysaccharide (LPS)-induced hippocampal neuroinflammation in cellular proteostasis. In particular, we focused on macroautophagy (hereinafter called autophagy) and endoplasmic reticulum-associated protein degradation (ERAD). We demonstrate that LPS injection induced autophagy activation that was dependent, at least in part, on glycogen synthase kinase (GSK)-3β activity but independent of mammalian target of rapamycin (mTOR) inhibition. Neuroinflammation also produced endoplasmic reticulum (ER) stress leading to canonical unfolded protein response (UPR) activation with a rapid activating transcription factor (ATF) 6α attenuation that resulted in a time-dependent down-regulation of ERAD markers. In this regard, the time-dependent accumulation of unspliced X-box binding protein (XBP) 1, likely because of decreased inositol-requiring enzyme (IRE) 1α-mediated splicing activity, might underlie in vivo ATF6α attenuation. Importantly, lactacystin-induced activation of ERAD was abolished in both the acute neuroinflammation model and in aged rats. Therefore, we provide a cellular pathway through which neuroinflammation might sensitize cells to neurodegeneration under stress situations, being relevant in normal aging and other disorders where neuroinflammation is a characteristic featureUnión Europea PI12/00445Unión Europea ERDF PI12/0044

    Molecular and pharmacological characterization of native cortical γ- aminobutyric acids receptors containing both α1 and α3 subunits

    Get PDF
    We have investigated the existence, molecular composition, and benzodiazepine binding properties of native cortical α1-α3 γ- aminobutyric acid(A) (GABA(A)) receptors using subunit-specific antibodies. The co-existence of α1 and α3 subunits in native GABA(A) receptors was demonstrated by immunoblot analysis of the anti-α1- or anti-α3- immunopurified receptors and by immunoprecipitation experiments of the [3H]zolpidem binding activity. Furthermore, immunodepletion experiments indicated that the α1-α3 GABA(A) receptors represented 54.7 ± 5.0 and 23.6 ± 3.3% of the α3 and α1 populations, respectively. Therefore, α1 and α3 subunits are associated in the same native GABA(A) receptor complex, but, on the other hand, these α1-α3 GABA(A) receptors from the cortex constitute a large proportion of the total α3 population and a relatively minor component of the α1 population. The pharmacological analysis of the α1- or α3-immunopurified receptors demonstrated the presence of two different benzodiazepine binding sites in each receptor population with high (type I binding sites) and low (type II binding sites) affinities for zolpidem and Cl 218,872. These results indicate the existence of native GABA(A) receptors possessing both α1 and α3 subunits, with α1 and α3 subunits expressing their characteristic benzodiazepine pharmacology. The molecular characterization of the anti-α1-anti-α3 double-Immunopurified receptors demonstrated the presence of stoichiometric amounts of α1 and α3 subunits, associated with α(2/3), and γ2 subunits. The pharmacological analysis of α1-α3 GABA(A) receptors demonstrated that, despite the fact that each α subunit retained its benzodiazepine binding properties, the relative proportion between type I and II binding sites or between 51- and 59-61-kDa [3H]Ro15-4513-photolabeled peptides was 70:30. Therefore, the α1 subunit is pharmacologically predominant over the α3 subunit. These results indicate the existence of active and nonactive α subunits in the native α1-α3 GABA(A) receptors from rat corte

    GABAa and a-Amino-3-hydroxy-5-methylsoxazole-4-propionate receptors are differentially affected by aging in the rat hippocampus

    Get PDF
    We have investigated the age-dependent modifications in the expression of eight different subunits of the γ-aminobutyric acid, type A (GABAA) receptor (α1, α2, α3, α5, β2, β3, γ2S, and γ2L) and all four subunits of the α-amino-3-hydroxy-5-methylsoxazole-4-propionate (AMPA) receptor (GluR1–4) in the hippocampus of 24-month-old rats. All aged hippocampi displayed a remarkable increase (aged/adult ratio, 3.53 ± 0.54) in the mRNA levels of the short version of the γ2 subunit in parallel with a similar increase in the γ2 subunit protein (aged/adult ratio, 2.90 ± 0.62). However, this increase was not observed in the mature receptor. On the other hand, the expression of the different α subunit mRNAs increased moderately with aging, displaying a heterogeneous pattern. The most frequent modification consisted in an increase in the expression of the α1 subunit mRNA (aged/adult ratio, 1.26 ± 0.18), in parallel with a similar increase on the α1 protein (aged/adult ratio, 1.27 ± 0.12) and in the α1 incorporated to the assembled GABAA receptor (tested by immunoprecipitation; aged/adult ratio, = 1.20 ± 0.10). However, in the same hippocampal samples, no major modifications were observed on the expression of the AMPA receptor subunits. As a whole, these results indicated the existence of an increased expression of the GABAA receptor subunits and a preservation of the AMPA receptor at the hippocampal formation. These modifications could reflect the existence of specific deficiencies (neuronal loss and/or deafferentiation) on the GABAergic system in the aged rat

    Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism

    Get PDF
    Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition

    Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition

    Get PDF
    Dysfunctions of the ubiquitin proteasome system (UPS) have been proposed to be involved in the aetiology and/or progression of several age-related neurodegenerative disorders. However, the mechanisms linking proteasome dysfunction to cell degeneration are poorly understood. We examined in young and aged rat hippocampus the activation of the unfolded protein response (UPR) under cellular stress induced by proteasome inhibition. Lactacystin injection blocked proteasome activity in young and aged animals in a similar extent and increased the amount of ubiquitinated proteins. Young animals activated the three UPR arms, IRE1α, ATF6α and PERK, whereas aged rats failed to induce the IRE1α and ATF6α pathways. In consequence, aged animals did not induce the expression of pro-survival factors (chaperones, Bcl-XL and Bcl-2), displayed a more sustained expression of proapoptotic markers (CHOP, Bax, Bak and JKN), an increased caspase-3 processing. At the cellular level, proteasome inhibition induced neuronal damage in young and aged animals as assayed using Fluorojade-B staining. However, degenerating neurons were evident as soon as 24 h postinjection in aged rats, but it was delayed up to 3 days in young animals. Our findings show evidence supporting age-related dysfunctions in the UPR activation as a potential mechanism linking protein accumulation to cell degeneration. An imbalance between pro-survival and pro-apoptotic proteins, because of noncanonical activation of the UPR in aged rats, would increase the susceptibility to cell degeneration. These findings add a new molecular vision that might be relevant in the aetiology of several age-related neurodegenerative disorders

    Lipopolysacharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus

    Get PDF
    BACKGROUND: Neuroinflammation and protein accumulation are characteristic hallmarks of both normal aging and age-related neurodegenerative diseases. However, the relationship between these factors in neurodegenerative processes is poorly understood. We have previously shown that proteasome inhibition produced higher neurodegeneration in aged than in young rats, suggesting that other additional age-related events could be involved in neurodegeneration. We evaluated the role of lipopolysaccharide (LPS)-induced neuroinflammation as a potential synergic risk factor for hippocampal neurodegeneration induced by proteasome inhibition. METHODS: Young male Wistar rats were injected with 1 μL of saline or LPS (5 mg/mL) into the hippocampus to evaluate the effect of LPS-induced neuroinflammation on protein homeostasis. The synergic effect of LPS and proteasome inhibition was analyzed in young rats that first received 1 μL of LPS and 24 h later 1 μL (5 mg/mL) of the proteasome inhibitor lactacystin. Animals were sacrificed at different times post-injection and hippocampi isolated and processed for gene expression analysis by real-time polymerase chain reaction; protein expression analysis by western blots; proteasome activity by fluorescence spectroscopy; immunofluorescence analysis by confocal microscopy; and degeneration assay by Fluoro-Jade B staining. RESULTS: LPS injection produced the accumulation of ubiquitinated proteins in hippocampal neurons, increased expression of the E2 ubiquitin-conjugating enzyme UB2L6, decreased proteasome activity and increased immunoproteasome content. However, LPS injection was not sufficient to produce neurodegeneration. The combination of neuroinflammation and proteasome inhibition leads to higher neuronal accumulation of ubiquitinated proteins, predominant expression of pro-apoptotic markers and increased neurodegeneration, when compared with LPS or lactacystin (LT) injection alone. CONCLUSIONS: Our results identify neuroinflammation as a risk factor that increases susceptibility to neurodegeneration induced by proteasome inhibition. These results highlight the modulation of neuroinflammation as a mechanism for neuronal protection that could be relevant in situations where both factors are present, such as aging and neurodegenerative diseases

    Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

    Get PDF
    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/ APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Ab oligomers were identified, the presence of A11-immunopositive Ab plaques also suggested a direct role of plaque-associated Ab oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages.Fondo de Investigación Sanitaria (FIS). Instituto de Salud Carlos III, España. PS09/00099, PS09/00151, PS09/00848 y PS09/00376Junta de Andalucía. SAS P09/496 y CTS-479

    Regional difference in inflammatory response to LPS-injection in the brain: Role of microglia cell density

    Get PDF
    To elucidate whether density of cells could contribute to the extent of microglial activation, we performed in vitro assays using three different densities of N13 microglia stimulated with LPS. Our results showed that induction of pro-inflammatory factors as TNF-α and iNOS was directly related to cell density, meanwhile the induction of the anti-inflammatory IL-10 was inversely related to cell density. Accordingly, in vivo assays showed that after LPS-injection, iNOS expression was more intense in substantia nigra, a brain area showing specific susceptibility to neurodegeneration after microglia activation, whereas IL-10 expression was more sustained in striatum, an area resistant to damage. These results support that microglia density is pivotal to control the balance between pro- and anti-inflammatory factors release.Instituto de Salud Carlos III PI060781, PI060567Junta de Andalucía CVI-90

    Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus

    Get PDF
    Dystrophic neurites associated with amyloid plaques precede neuronal death and manifest early in Alzheimer’s disease (AD). In this work we have characterized the plaque-associated neuritic pathology in the hippocampus of young (4- to 6-month-old) PS1M146L/APP751SL mice model, as the initial degenerative process underlying functional disturbance prior to neuronal loss. Neuritic plaques accounted for almost all fibrillar deposits and an axonal origin of the dystrophies was demonstrated. The early induction of autophagy pathology was evidenced by increased protein levels of the autophagosome marker LC3 that was localized in the axonal dystrophies, and by electron microscopic identification of numerous autophagic vesicles filling and causing the axonal swellings. Early neuritic cytoskeletal defects determined by the presence of phosphorylated tau (AT8-positive) and actin–cofilin rods along with decreased levels of kinesin-1 and dynein motor proteins could be responsible for this extensive vesicle accumulation within dystrophic neurites. Although microsomal Aβ oligomers were identified, the presence of A11-immunopositive Aβ plaques also suggested a direct role of plaque-associated Aβ oligomers in defective axonal transport and disease progression. Most importantly, presynaptic terminals morphologically disrupted by abnormal autophagic vesicle buildup were identified ultrastructurally and further supported by synaptosome isolation. Finally, these early abnormalities in axonal and presynaptic structures might represent the morphological substrate of hippocampal dysfunction preceding synaptic and neuronal loss and could significantly contribute to AD pathology in the preclinical stages
    corecore