17,960 research outputs found
A Generic Conceptual Model for Risk Analysis in a Multi-agent Based Collaborative Design Environment
Organised by: Cranfield UniversityThis paper presents a generic conceptual model of risk evaluation in order to manage the risk through
related constraints and variables under a multi-agent collaborative design environment. Initially, a hierarchy
constraint network is developed to mapping constraints and variables. Then, an effective approximation
technique named Risk Assessment Matrix is adopted to evaluate risk level and rank priority after probability
quantification and consequence validation. Additionally, an Intelligent Data based Reasoning Methodology
is expanded to deal with risk mitigation by combining inductive learning methods and reasoning
consistency algorithms with feasible solution strategies. Finally, two empirical studies were conducted to
validate the effectiveness and feasibility of the conceptual model.Mori Seiki – The Machine Tool Compan
The Bosonic Structure of Fermions
We bosonize fermions by identifying their occupation numbers as the binary
digits of a Bose occupation number. Unlike other schemes, our method allows
infinitely many fermionic oscillators to be constructed from just one bosonic
oscillator.Comment: 7pages, ADP-94-13/T15
The Witten equation, mirror symmetry and quantum singularity theory
For any non-degenerate, quasi-homogeneous hypersurface singularity, we
describe a family of moduli spaces, a virtual cycle, and a corresponding
cohomological field theory associated to the singularity. This theory is
analogous to Gromov-Witten theory and generalizes the theory of r-spin curves,
which corresponds to the simple singularity A_{r-1}.
We also resolve two outstanding conjectures of Witten. The first conjecture
is that ADE-singularities are self-dual; and the second conjecture is that the
total potential functions of ADE-singularities satisfy corresponding
ADE-integrable hierarchies. Other cases of integrable hierarchies are also
discussed.Comment: To appear in Annals of Mathematics. Includes resolution of the Witten
ADE integrable hierarchies conjecture and Witten's ADE self-mirror
conjecture. Several corrections and clarification
Measurements of Heavy Flavor and Di-electron Production at STAR
Heavy quarks are produced early in the relativistic heavy ion collisions, and
provide an excellent probe into the hot and dense nuclear matter created at
RHIC. In these proceedings, we will discuss recent STAR measurements of heavy
flavor production, to investigate the heavy quark interaction with the medium.
Electromagnetic probes, such as electrons, provide information on the various
stages of the medium evolution without modification by final stage
interactions. Di-electron production measurements by STAR will also be
discussed.Comment: 5 pages, 6 figures, proceedings for CPOD201
Identifying network communities with a high resolution
Community structure is an important property of complex networks. An
automatic discovery of such structure is a fundamental task in many
disciplines, including sociology, biology, engineering, and computer science.
Recently, several community discovery algorithms have been proposed based on
the optimization of a quantity called modularity (Q). However, the problem of
modularity optimization is NP-hard, and the existing approaches often suffer
from prohibitively long running time or poor quality. Furthermore, it has been
recently pointed out that algorithms based on optimizing Q will have a
resolution limit, i.e., communities below a certain scale may not be detected.
In this research, we first propose an efficient heuristic algorithm, Qcut,
which combines spectral graph partitioning and local search to optimize Q.
Using both synthetic and real networks, we show that Qcut can find higher
modularities and is more scalable than the existing algorithms. Furthermore,
using Qcut as an essential component, we propose a recursive algorithm, HQcut,
to solve the resolution limit problem. We show that HQcut can successfully
detect communities at a much finer scale and with a higher accuracy than the
existing algorithms. Finally, we apply Qcut and HQcut to study a
protein-protein interaction network, and show that the combination of the two
algorithms can reveal interesting biological results that may be otherwise
undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at
http://cic.cs.wustl.edu/qcut/supplemental.pd
Analytical and experimental study of vibrations in a gear transmission
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement
Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector
Future collider applications and present high-gradient laser plasma wakefield
accelerators operating with picosecond bunch durations place a higher demand on
the time resolution of bunch distribution diagnostics. This demand has led to
significant advancements in the field of electro-optic sampling over the past
ten years. These methods allow the probing of diagnostic light such as coherent
transition radiation or the bunch wakefields with sub-picosecond time
resolution. Potential applications in shot-to-shot, non-interceptive
diagnostics continue to be pursued for live beam monitoring of collider and
pump-probe experiments. Related to our developing work with electro-optic
imaging, we present results on single-shot electro-optic sampling of the
coherent transition radiation from bunches generated at the A0 photoinjector.Comment: 3 p
- …
