92 research outputs found

    Analysis of Rabies in China: Transmission Dynamics and Control

    Get PDF
    Human rabies is one of the major public-health problems in China. The number of human rabies cases has increased dramatically in the last 15 years, partially due to the poor understanding of the transmission dynamics of rabies and the lack of effective control measures of the disease. In this article, in order to explore effective control and prevention measures we propose a deterministic model to study the transmission dynamics of rabies in China. The model consists of susceptible, exposed, infectious, and recovered subpopulations of both dogs and humans and describes the spread of rabies among dogs and from infectious dogs to humans. The model simulations agree with the human rabies data reported by the Chinese Ministry of Health. We estimate that the basic reproduction number for the rabies transmission in China and predict that the number of the human rabies is decreasing but may reach another peak around 2030. We also perform some sensitivity analysis of in terms of the model parameters and compare the effects of culling and immunization of dogs. Our study demonstrates that (i) reducing dog birth rate and increasing dog immunization coverage rate are the most effective methods for controlling rabies in China; and (ii) large scale culling of susceptible dogs can be replaced by immunization of them

    MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development

    Get PDF
    The role of microRNAs (miRNAs) during cotton fiber development remains unclear. Here, a total of 54 miRNAs belonging to 39 families were selected to characterize miRNA regulatory mechanism in eight different fiber development stages in upland cotton cv BM-1. Among 54 miRNAs, 18 miRNAs were involved in cotton fiber initiation and eight miRNAs were related to fiber elongation and secondary wall biosynthesis. Additionally, 3,576 protein-coding genes were candidate target genes of these miRNAs, which are potentially involved in cotton fiber development. We also investigated the regulatory network of miRNAs and corresponding targets in fiber initiation and elongation, and secondary wall formation. Our Gene Ontology-based term classification and KEGG-based pathway enrichment analyses showed that the miRNA targets covered 220 biological processes, 67 molecular functions, 45 cellular components, and 10 KEGG pathways. Three of ten KEGG pathways were involved in lignan synthesis, cell elongation, and fatty acid biosynthesis, all of which have important roles in fiber development. Overall, our study shows the potential regulatory roles of miRNAs in cotton fiber development and the importance of miRNAs in regulating different cell types. This is helpful to design miRNA-based biotechnology for improving fiber quality and yield

    Generation, Annotation and Analysis of First Large-Scale Expressed Sequence Tags from Developing Fiber of Gossypium barbadense L

    Get PDF
    BACKGROUND: Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank. METHODOLOGY AND PRINCIPAL FINDINGS: In total, 10,979 high-quality expressed sequence tags (ESTs) were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted. CONCLUSIONS/SIGNIFICANCE: The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to important agronomic traits of cotton through oligonucleotide array. Our work will also provide important resources for comparative genomics, polyploidization, and genome evolution among Gossypium species

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Improved Measurement of Electron Antineutrino Disappearance at Daya Bay

    Get PDF
    postprin

    Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment

    Get PDF
    published_or_final_versio

    Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    Get PDF
    published_or_final_versio

    Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    Get PDF
    published_or_final_versio

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio
    • …
    corecore