74 research outputs found

    Variable Powder Flow Rate Control in Laser Metal Deposition Processes

    Get PDF
    This paper proposes a novel technique, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are first constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that VPFRC is successful in maintaining a uniform track morphology, even when the motion control system accelerates and decelerates.Mechanical Engineerin

    Laser Deposition Cladding On-Line Inspection Using 3-D Scanner

    Get PDF
    Laser deposition directly deposits metal cladding to fabricate and repair components. In order to finish the fabrication or repair, 3-D shape of the deposition needs to be inspected, and thus it can be determined if it has sufficient cladding to fabricate a part after deposition process. In the present hybrid system in the Laser Aided Manufacturing Lab (LAMP) at the University of Missouri - Rolla, a CMM system is used to do the inspection. A CMM requires point-by-point contact, which is time consuming and difficult to plan for an irregular deposition geometry. Also, the CMM is a separate device, which requires removal of the part from the hybrid system, which can induce fixture errors. The 3-D scanner is a non-contact tool to measure the 3-D shape of laser deposition cladding which is fast and accurate. In this paper, A prototype non-contact 3-D scanner approach has been implemented to inspect the free-form and complex parts built by laser deposition. Registration of the measured model and 3-D CAD model allows the comparison between the two models. It enables us to determine if the deposition is sufficient before machining.Mechanical Engineerin

    Laser Additive Manufacturing Process Planning and Automation 243

    Get PDF
    This paper presents a Laser Additive Manufacturing Process Planning (LAMPP) being developed at the University of Missouri-Rolla. The off-line planning recognizes difficult-to-build features from an STL file, selects optimal part orientation and building directions based on the skeleton information of the object geometry, and optimizes the sub-process sequences for deposition and machining. During the optimization of the subpart building processes, collaboration between the deposition process planner and the machining process planner is needed to check the deposition availability and machinability. As a result, tool paths for both the laser head and the machining head are automatically generated.Mechanical Engineerin

    Evaluation of Mechanical Properties and Microstructure for Laser Deposition Process and Welding Process

    Get PDF
    Laser Aided Manufacturing Process (LAMP) can be applied to repair steel die/molds which are currently repaired using traditional welding process in industry. In order to fully understand the advantages of laser deposition repair process over traditional welded-repair process, the mechanical properties such as tensile strength and hardness of H13 tool steel samples produced by these two processes were investigated. The microstructure and fracture surface of the samples were analyzed using optical microscope and SEM (Scanning Electron Microscope). Moreover, depositions on substrates with different shapes were studied to evaluate the performance of LAMP on damaged parts with complicated geometric shape.Mechanical Engineerin

    A Review of Layer Based Manufacturing Processes for Metals

    Get PDF
    The metal layered manufacturing processes have provided industries with a fast method to build functional parts directly from CAD models. This paper compares current metal layered manufacturing technologies from including powder based metal deposition, selective laser sinstering (SLS), wire feed deposition etc. The characteristics of each process, including its industrial applications, advantages/disadvantages, costs etc are discussed. In addition, the comparison between each process in terms of build rate, suitable metal etc. is presented in this paper.Mechanical Engineerin

    Part Repair using a Hybrid Manufacturing System

    Get PDF
    Nowadays, part repair technology is gaining more interest from military and industries due to the benefit of cost reducing as well as time and energy saving. Traditionally, part repair is done in the repair department using welding process. The limitations of the traditional welding process are becoming more and more noticeable when the accuracy and reliability are required. Part repair process has been developed utilizing a hybrid manufacturing system, in which the laser aided deposition and CNC cutting processes are integrated. Part repair software is developed in order to facilitate the users. The system and the software elevate the repair process to the next level, in which the accuracy, reliability, and efficiency can be achieved. The concept of repair process is presented in this paper. Verification and experimental results are also discussed.Mechanical Engineerin

    Multi-Axis Planning System (MAPS) for Hybrid Laser Metal Deposition Processes

    Get PDF
    This paper summarizes the research and development of a Multi-Axis Planning System (MAPS) for hybrid laser metal deposition processes. The project goal is to enable the current direct metal deposition systems to fully control and utilize multi-axis capability to make complex parts. MAPS allows fully automated process planning for multi-axis layered manufacturing to control direct metal deposition machines for automated fabrication. Such a capability will lead to dramatic reductions in lead time and manufacturing costs for high-value, low-volume components with high performance material. The overall approach, slicing algorithm, machine simulation for planning validation, and the planning results will be presented

    Octree Approach for Simulation of Additive Manufacturing Toolpath

    Get PDF
    Machine simulation is an effective way of checking additive manufacturing tool paths for both interferences and errors in part produced. This paper presents an algorithm to visually simulate a multi axis additive manufacturing system as it executes a process plan. Simulation results are intended to be used as a verification step before physically producing the part. Verification is particularly important for large builds of expensive materials. The algorithm uses an octree approach to efficiently model the deposition of part geometry and its changes. This paper discusses development of the simulation algorithm, including both the representation of the additive manufacturing machine and the octree data model of the part being produced

    Determination of Transformation Matrix in a Hybrid Multi-Axis Laser-Aided Manufacturing System and its Practical Implementation

    Get PDF
    The Laser Aided Manufacturing Process (LAMP) is a multi-axis hybrid manufacturing process comprised of both an additive process, laser deposition, and a subtractive process, CNC machining. Determination of transformation matrix is one of the most important tasks to bridge the gap between process planning (software) and real deposition/machining process. The first part of the paper discusses an algorithm for computing the position of point/points in three-dimensional space, using homogenous transformation matrices. The second part of the paper discusses about how the algorithm was used in practice to build 3-D parts and part-repair using hybrid manufacturing process
    • …
    corecore