4 research outputs found

    The North Atlantic–Eurasian teleconnection in summer and its effects on Eurasian climates

    No full text
    A teleconnection between the North Atlantic Ocean and the Eurasian continent is suggested by statistical and dynamical analysis of the northern summer 500 hPa geopotential height field. This teleconnection, termed the Atlantic–Eurasian (AEA) teleconnection, has five centers of action, in the subtropical North Atlantic Ocean, northeastern North Atlantic Ocean, Eastern Europe, the Kara Sea, and north China. The AEA index (AEAI) shows that the AEA undergoes a high degree of variability from year to year, and the AEAI has an increasing trend over the last 30 years. Our results suggest that this phenomenon is a large-scale Rossby wave train that originates in the subtropical North Atlantic Ocean. We support this conclusion by the methods of stationary wave ray tracing in non-uniform horizontal basic flow, wave activity flux calculations, and numerical models. The AEA and midlatitude circumglobal teleconnection pattern manifest distinct features at the hemispheric scale, despite the anomalies associated with them bear some similarities in the northeastern North Atlantic and Eastern Europe. Regional climate variations are strongly linked to this AEA along its path through northern Eurasia

    Impact of high-frequency observations on fog forecasting: a case study of OSSE

    No full text
    Fog that refers to the concentration of ice or water droplets in the near surface air is an important short-time meteorological phenomenon. As the measure of visibility of air environment, it directly affects societal economic activities and daily lives. As more and more high-frequency observations (observations with short time intervals) become available, understanding how to make full use of such observed data to improve fog forecasting is an important and urgent research topic. Based on the Weather Research and Forecasting (WRF) Model and an observation simulation system experiment (OSSE) framework, this study explores a modified three-dimensional variational (3D-Var) data assimilation (DA) scheme to address the utilization of high-frequency observations on fog forecasting. In the modified 3D-Var scheme, the large-scale analysis constraint (LSAC) method is employed to the WRF 3D-Var. A dense fog event, which occurred in the North of China in 2007, is selected for the case study. Experimental results show that coherently combining high-frequency observational information with large-scale analysis information enables to significantly improve the 3D-Var analyses and the initialized model forecasts of fog coverage, especially over areas with coarse observations. The modified scheme is therefore promising for improving the routine forecasting of coastal sea fog. The optimal DA interval for fog forecasting is also discussed in this study
    corecore