3,551 research outputs found

    Attosecond nanoplasmonic streaking of localized fields near metal nanospheres

    Full text link
    Collective electron dynamics in plasmonic nanosystems can unfold on timescales in the attosec- ond regime and the direct measurements of plasmonic near-field oscillations is highly desirable. We report on numerical studies on the application of attosecond nanoplasmonic streaking spectroscopy to the measurement of collective electron dynamics in isolated Au nanospheres. The plasmonic field oscillations are induced by a few-cycle NIR driving field and are mapped by the energy of photoemitted electrons using a synchronized, time-delayed attosecond XUV pulse. By a detailed analysis of the amplitudes and phase shifts, we identify the different regimes of nanoplasmonic streaking and study the dependence on particle size, XUV photoelectron energy and emission position. The simulations indicate that the near-fields around the nanoparticles can be spatio-temporally reconstructed and may give detailed insight into the build-up and decay of collective electron motion.Comment: Revised versio

    On the Experimental Estimation of Surface Enhanced Raman Scattering (SERS) Cross Sections by Vibrational Pumping

    Get PDF
    We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects and limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.Comment: To be submitted to J. Phys. Chem.

    Enhancement factor distribution around a single SERS Hot-spot and its relation to Single Molecule detection

    Get PDF
    We provide the theoretical framework to understand the phenomenology and statistics of single-molecule (SM) signals arising in Surface-Enhanced Raman Scattering (SERS) under the presence of so-called electromagnetic hot-spots (HS's). We show that most characteristics of the SM-SERS phenomenon can be tracked down to the presence of tail-like (power law) distribution of enhancements and we propose a specific model for it. We analyze, in the light of this, the phenomenology of SM-SERS and show how the different experimental manifestations of the effect reported in the literature can be analyzed and understood under a unified ``universal'' framework with a minimum set of parameters.Comment: 13 pages, 4 figures, submitted to J. Chem. Phy
    corecore