17 research outputs found

    Bayesian optimisation for automated machine learning

    Get PDF
    In this thesis, we develop a rich family of efficient and performant Bayesian optimisation (BO) methods to tackle various AutoML tasks. We first introduce a fast information-theoretic BO method, FITBO, that overcomes the computation bottleneck of information-theoretic acquisition functions while maintaining their competitiveness on the noisy optimisation problems frequently encountered in AutoML. We then improve on the idea of local penalisation and develop an asynchronous batch BO solution, PLAyBOOK, to enable more efficient use of parallel computing resources when evaluation runtime varies across configurations. In view of the fact that many practical AutoML problems involve a mixture of multiple continuous and multiple categorical variables, we propose a new framework, named Continuous and Categorical BO (CoCaBO) to handle such mixed-type input spaces. CoCaBO merges the strengths of multi-armed bandits on categorical inputs and that of BO on continuous space, and uses a tailored kernel to permit information sharing across different categorical variables. We also extend CoCaBO by harnessing the concept of local trust region to achieve competitive performance on high-dimensional optimisation problems with mixed input types. Beyond hyper-parameter tuning, we also investigate the novel use of BO on two important AutoML applications: black-box adversarial attack and neural architecture search. For the former (adversarial attack), we introduce the first BO-based attacks on image and graph classifiers; by actively querying the unknown victim classifier, our BO attacks can successfully find adversarial perturbations with many fewer attempts than competing baselines. They can thus serve as efficient tools for assessing the robustness of models suggested by AutoML. For the latter (neural architecture search), we leverage the Weisfeiler-Lehamn graph kernel to empower our BO search strategy, NAS-BOWL, to naturally handle the directed acyclic graph representation of architectures. Besides achieving superior query efficiency, our NAS-BOWL also returns interpretable sub-features that help explain the architecture performance, thus marking the first step towards interpretable neural architecture search. Finally, we examine the most computation-intense step in AutoML pipeline: generalisation performance evaluation for a new configuration. We propose a cheap yet reliable test performance estimator based on a simple measure of training speed. It consistently outperforms various existing estimators on on a wide range of architecture search spaces and and can be easily incorporated into different search strategies, including BO, to improve the cost efficiency

    Construction of Hierarchical Neural Architecture Search Spaces based on Context-free Grammars

    Full text link
    The discovery of neural architectures from simple building blocks is a long-standing goal of Neural Architecture Search (NAS). Hierarchical search spaces are a promising step towards this goal but lack a unifying search space design framework and typically only search over some limited aspect of architectures. In this work, we introduce a unifying search space design framework based on context-free grammars that can naturally and compactly generate expressive hierarchical search spaces that are 100s of orders of magnitude larger than common spaces from the literature. By enhancing and using their properties, we effectively enable search over the complete architecture and can foster regularity. Further, we propose an efficient hierarchical kernel design for a Bayesian Optimization search strategy to efficiently search over such huge spaces. We demonstrate the versatility of our search space design framework and show that our search strategy can be superior to existing NAS approaches. Code is available at https://github.com/automl/hierarchical_nas_construction

    Learning to Identify Top Elo Ratings: A Dueling Bandits Approach

    Get PDF
    The Elo rating system is widely adopted to evaluate the skills of (chess) game and sports players. Recently it has been also integrated into machine learning algorithms in evaluating the performance of computerised AI agents. However, an accurate estimation of the Elo rating (for the top players) often requires many rounds of competitions, which can be expensive to carry out. In this paper, to improve the sample efficiency of the Elo evaluation (for top players), we propose an efficient online match scheduling algorithm. Specifically, we identify and match the top players through a dueling bandits framework and tailor the bandit algorithm to the gradient-based update of Elo. We show that it reduces the per-step memory and time complexity to constant, compared to the traditional likelihood maximization approaches requiring O(t) time. Our algorithm has a regret guarantee of Õ(√T), sublinear in the number of competition rounds and has been extended to the multidimensional Elo ratings for handling intransitive games. We empirically demonstrate that our method achieves superior convergence speed and time efficiency on a variety of gaming tasks
    corecore