32 research outputs found

    Limiting accuracy of segregated solution methods for nonsymmetric saddle point problems

    Get PDF
    AbstractNonsymmetric saddle point problems arise in a wide variety of applications in computational science and engineering. The aim of this paper is to discuss the numerical behavior of several nonsymmetric iterative methods applied for solving the saddle point systems via the Schur complement reduction or the null-space projection approach. Krylov subspace methods often produce the iterates which fluctuate rather strongly. Here we address the question whether large intermediate approximate solutions reduce the final accuracy of these two-level (inner–outer) iteration algorithms. We extend our previous analysis obtained for symmetric saddle point problems and distinguish between three mathematically equivalent back-substitution schemes which lead to a different numerical behavior when applied in finite precision arithmetic. Theoretical results are then illustrated on a simple model example

    An overview of block Gram-Schmidt methods and their stability properties

    Full text link
    Block Gram-Schmidt algorithms serve as essential kernels in many scientific computing applications, but for many commonly used variants, a rigorous treatment of their stability properties remains open. This survey provides a comprehensive categorization of block Gram-Schmidt algorithms, particularly those used in Krylov subspace methods to build orthonormal bases one block vector at a time. All known stability results are assembled, and new results are summarized or conjectured for important communication-reducing variants. Additionally, new block versions of low-synchronization variants are derived, and their efficacy and stability are demonstrated for a wide range of challenging examples. Low-synchronization variants appear remarkably stable for s-step-like matrices built with Newton polynomials, pointing towards a new stable and efficient backbone for Krylov subspace methods. Numerical examples are computed with a versatile MATLAB package hosted at https://github.com/katlund/BlockStab, and scripts for reproducing all results in the paper are provided. Block Gram-Schmidt implementations in popular software packages are discussed, along with a number of open problems. An appendix containing all algorithms type-set in a uniform fashion is provided.Comment: 42 pages, 5 tables, 17 figures, 20 algorithm

    Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media

    Get PDF
    Mixed-hybrid finite element discretization of Darcy's law and the continuity equation that describe the potential fluid flow problem in porous media leads to symmetric indefinite saddle-point problems. In this paper we consider solution techniques based on the computation of a null-space basis of the whole or of a part of the left lower off-diagonal block in the system matrix and on the subsequent iterative solution of a projected system. This approach is mainly motivated by the need to solve a sequence of such systems with the same mesh but different material properties. A fundamental cycle null-space basis of the whole off-diagonal block is constructed using the spanning tree of an associated graph. It is shown that such a basis may be theoretically rather ill-conditioned. Alternatively, the orthogonal null-space basis of the sub-block used to enforce continuity over faces can be easily constructed. In the former case, the resulting projected system is symmetric positive definite and so the conjugate gradient method can be applied. The projected system in the latter case remains indefinite and the preconditioned minimal residual method (or the smoothed conjugate gradient method) should be used. The theoretical rate of convergence for both algorithms is discussed and their efficiency is compared in numerical experiments. Copyright © 2006, Kent State University

    Iterační řešení soustav sedlového bodu: stručný přehled

    No full text
    In this contribution we attempt to review recent advances in the field of iterative methods for solving large saddle point problems. The main focus is on developments in the area of Krylov subspace methods and block preconditioning techniques for symmetric and nonsymmetric linear systems that arise in the context of solving the saddle point problems
    corecore