24 research outputs found

    A clinically relevant sheep model of orthotopic heart transplantation 24 h after donor brainstem death

    Get PDF
    BACKGROUND: Heart transplantation (HTx) from brainstem dead (BSD) donors is the gold-standard therapy for severe/end-stage cardiac disease, but is limited by a global donor heart shortage. Consequently, innovative solutions to increase donor heart availability and utilisation are rapidly expanding. Clinically relevant preclinical models are essential for evaluating interventions for human translation, yet few exist that accurately mimic all key HTx components, incorporating injuries beginning in the donor, through to the recipient. To enable future assessment of novel perfusion technologies in our research program, we thus aimed to develop a clinically relevant sheep model of HTx following 24 h of donor BSD. METHODS: BSD donors (vs. sham neurological injury, 4/group) were hemodynamically supported and monitored for 24 h, followed by heart preservation with cold static storage. Bicaval orthotopic HTx was performed in matched recipients, who were weaned from cardiopulmonary bypass (CPB), and monitored for 6 h. Donor and recipient blood were assayed for inflammatory and cardiac injury markers, and cardiac function was assessed using echocardiography. Repeated measurements between the two different groups during the study observation period were assessed by mixed ANOVA for repeated measures. RESULTS: Brainstem death caused an immediate catecholaminergic hemodynamic response (mean arterial pressure, p = 0.09), systemic inflammation (IL-6 - p = 0.025, IL-8 - p = 0.002) and cardiac injury (cardiac troponin I, p = 0.048), requiring vasopressor support (vasopressor dependency index, VDI, p = 0.023), with normalisation of biomarkers and physiology over 24 h. All hearts were weaned from CPB and monitored for 6 h post-HTx, except one (sham) recipient that died 2 h post-HTx. Hemodynamic (VDI - p = 0.592, heart rate - p = 0.747) and metabolic (blood lactate, p = 0.546) parameters post-HTx were comparable between groups, despite the observed physiological perturbations that occurred during donor BSD. All p values denote interaction among groups and time in the ANOVA for repeated measures. CONCLUSIONS: We have successfully developed an ovine HTx model following 24 h of donor BSD. After 6 h of critical care management post-HTx, there were no differences between groups, despite evident hemodynamic perturbations, systemic inflammation, and cardiac injury observed during donor BSD. This preclinical model provides a platform for critical assessment of injury development pre- and post-HTx, and novel therapeutic evaluation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00425-4

    An Ovine Model of Hemorrhagic Shock and Resuscitation, to Assess Recovery of Tissue Oxygen Delivery and Oxygen Debt, and Inform Patient Blood Management.

    Full text link
    BACKGROUND: Aggressive fluid or blood component transfusion for severe hemorrhagic shock may restore macrocirculatory parameters, but not always improve microcirculatory perfusion and tissue oxygen delivery. We established an ovine model of hemorrhagic shock to systematically assess tissue oxygen delivery and repayment of oxygen debt; appropriate outcomes to guide Patient Blood Management. METHODS: Female Dorset-cross sheep were anesthetized, intubated, and subjected to comprehensive macrohemodynamic, regional tissue oxygen saturation (StO2), sublingual capillary imaging, and arterial lactate monitoring confirmed by invasive organ-specific microvascular perfusion, oxygen pressure, and lactate/pyruvate levels in brain, kidney, liver, and skeletal muscle. Shock was induced by stepwise withdrawal of venous blood until MAP was 30 mm Hg, mixed venous oxygen saturation (SvO2) 4 mM. Resuscitation with PlasmaLyte® was dosed to achieve MAP > 65 mm Hg. RESULTS: Hemorrhage impacted primary outcomes between baseline and development of shock: MAP 89 ± 5 to 31 ± 5 mm Hg (P < 0.01), SvO2 70 ± 7 to 23 ± 8% (P < 0.05), cerebral regional tissue StO2 77 ± 11 to 65 ± 9% (P < 0.01), peripheral muscle StO2 66 ± 8 to 16 ± 9% (P < 0.01), arterial lactate 1.5 ± 1.0 to 5.1 ± 0.8 mM (P < 0.01), and base excess 1.1 ± 2.2 to -3.6 ± 1.7 mM (P < 0.05). Invasive organ-specific monitoring confirmed reduced tissue oxygen delivery; oxygen tension decreased and lactate increased in all tissues, but moderately in brain. Blood volume replacement with PlasmaLyte® improved primary outcome measures toward baseline, confirmed by organ-specific measures, despite hemoglobin reduced from baseline 10.8 ± 1.2 to 5.9 ± 1.1 g/dL post-resuscitation (P < 0.01). CONCLUSION: Non-invasive measures of tissue oxygen delivery and oxygen debt repayment are suitable outcomes to inform Patient Blood Management of hemorrhagic shock, translatable for pre-clinical assessment of novel resuscitation strategies

    The effect of hyperoxia on inflammation and platelet responses in an ex vivo extracorporeal membrane oxygenation circuit

    No full text
    Use of extracorporeal membrane oxygenation (ECMO) is expanding, however, it is still associated with significant morbidity and mortality. Activation of inflammatory and innate immune responses and hemostatic alterations contribute to complications. Hyperoxia may play a role in exacerbating these responses. Nine ex vivo ECMO circuits were tested using fresh healthy human whole blood, with two oxygen levels: 21% inspired fraction of oxygen (FiO(2); mild hyperoxia; n = 5) and 100% FiO(2)(severe hyperoxia; n = 4). Serial blood samples were taken for analysis of platelet aggregometry, leukocyte activation, inflammatory, and oxidative stress markers. ECMO resulted in reduced adenosine diphosphate- (P < .05) and thrombin receptor activating peptide-induced (P < .05) platelet aggregation, as well as increasing levels of the neutrophil activation marker, neutrophil elastase (P = .013). Additionally, levels of the inflammatory chemokine interleukin-8 were elevated (P < .05) and the activity of superoxide dismutase, a marker of oxidative stress, was increased (P = .002). Hyperoxia did not augment these responses, with no significant differences detected between mild and severe hyperoxia. Our ex vivo model of ECMO revealed that the circuit itself triggers a pro-inflammatory and oxidative stress response, however, exposure to supra-physiologic oxygen does not amplify that response. Extended-duration studies and inclusion of an endothelial component could be beneficial in characterizing longer term changes

    An innovative ovine model of severe cardiopulmonary failure supported by veno-arterial extracorporeal membrane oxygenation

    No full text
    Abstract Refractory cardiogenic shock (CS) often requires veno-arterial extracorporeal membrane oxygenation (VA-ECMO) to sustain end-organ perfusion. Current animal models result in heterogenous cardiac injury and frequent episodes of refractory ventricular fibrillation. Thus, we aimed to develop an innovative, clinically relevant, and titratable model of severe cardiopulmonary failure. Six sheep (60 ± 6 kg) were anaesthetized and mechanically ventilated. VA-ECMO was commenced and CS was induced through intramyocardial injections of ethanol. Then, hypoxemic/hypercapnic pulmonary failure was achieved, through substantial decrease in ventilatory support. Echocardiography was used to compute left ventricular fractional area change (LVFAC) and cardiac Troponin I (cTnI) was quantified. After 5 h, the animals were euthanised and the heart was retrieved for histological evaluations. Ethanol (58 ± 23 mL) successfully induced CS in all animals. cTnI levels increased near 5000-fold. CS was confirmed by a drop in systolic blood pressure to 67 ± 14 mmHg, while lactate increased to 4.7 ± 0.9 mmol/L and LVFAC decreased to 16 ± 7%. Myocardial samples corroborated extensive cellular necrosis and inflammatory infiltrates. In conclusion, we present an innovative ovine model of severe cardiopulmonary failure in animals on VA-ECMO. This model could be essential to further characterize CS and develop future treatments
    corecore