42 research outputs found

    Ivermectin - old drug, new tricks?

    Get PDF
    Ivermectin is one of the most important drugs in veterinary and human medicine for the control of parasitic infection and was the joint focus of the 2015 Nobel Prize in Physiology or Medicine, some 35 years after its remarkable discovery. Although best described for its activity on glutamate-gated chloride channels in parasitic nematodes, understanding of its mode of action remains incomplete. In the field of veterinary medicine, resistance to ivermectin is now widespread, but the mechanisms underlying resistance are unresolved. Here we discuss the history of this versatile drug and its use in global health. Based on recent studies in a variety of systems, we question whether ivermectin could have additional modes of action on parasitic nematodes

    The cytochrome P450 family in the parasitic nematode Haemonchus contortus

    Get PDF
    Haemonchus contortus, a parasitic nematode of sheep, is unsurpassed in its ability to develop resistance to the anthelmintic drugs used as the mainstay of its control. A reduction in drug efficacy leads to prophylactic and therapeutic failure, resulting in loss of productivity and poor animal welfare. This situation has reached crisis point in the sheep industry, with farms forced to close their sheep enterprises due to an inability to control resistant nematodes. The mechanisms of anthelmintic resistance are poorly understood for many commonly used drugs. Altered or increased drug metabolism is a possible mechanism, yet has received little attention despite the clear role of xenobiotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of drug-metabolising enzymes present in all species. Their expression is induced on exposure to their substrate and over-expression of a single CYP has been shown to confer multi-drug resistance in insects. The H. contortus genome is currently being sequenced and assembled at the Wellcome Trust Sanger Institute, Cambridge. Despite the lack of a completed genome, the public provision of read, contig and supercontig databases has facilitated the identification of 73 partial gene sequences representing a large family of H. contortus CYPs. Their constitutive expression is highest in larval stages although adult expression was also detected. The majority of CYPs are most highly expressed in the worm intestine, which is thought to be the main organ of detoxification in nematodes and is consistent with a role in xenobiotic metabolism. A small number of CYPs were more highly expressed in anthelmintic resistant isolates than in an anthelmintic-susceptible isolate and may represent candidate genes for further research. The identification of putative H. contortus orthologues of the Caenorhabditis elegans nuclear hormone receptors controlling CYP transcription and the cytochrome P450 reductase gene catalysing electron transfer to CYPs suggests that regulatory and functional pathways may be conserved between the species. Transcriptome analysis using next generation sequencing was undertaken to guide a pilot annotation of 590 Kb genomic sequence. A high degree of conservation was observed between the conceptual translations of H. contortus and C. elegans genes, although at a genomic level, H. contortus consistently had a larger number and size of introns, which may reflect a larger genome than previously predicted. Gene order was not conserved, although regions of microsynteny were present and a bias for intra-chromosomal rearrangements resulted in putative orthologues frequently residing on the corresponding chromosome in both species. Partial conservation of a number of C. elegans operons in H. contortus was identified. These findings have important implications for the H. contortus genome project and the transcriptome databases provide a valuable resource for future global comparisons of gene expression

    Small RNAs in parasitic nematodes - forms and functions

    Get PDF
    Small RNAs are important regulators of gene expression. They were first identified in Caenorhabditis elegans, but it is now apparent that the main small RNA silencing pathways are functionally conserved across diverse organisms. Availability of genome data for an increasing number of parasitic nematodes has enabled bioinformatic identification of small RNA sequences. Expression of these in different lifecycle stages is revealed by small RNA sequencing and microarray analysis. In this review we describe what is known of the three main small RNA classes in parasitic nematodes – microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs) and small interfering RNAs (siRNAs) – and their proposed functions. miRNAs regulate development in C. elegans and the temporal expression of parasitic nematode miRNAs suggest modulation of target gene levels as parasites develop within the host. miRNAs are also present in extracellular vesicles released by nematodes in vitro, and in plasma from infected hosts, suggesting potential regulation of host gene expression. Roles of piRNAs and siRNAs in suppressing target genes, including transposable elements, are also reviewed. Recent successes in RNAi-mediated gene silencing, and application of small RNA inhibitors and mimics will continue to advance understanding of small RNA functions within the parasite and at the host–parasite interface

    The cytochrome P450 family in the parasitic nematode <i>Haemonchus contortus</i>

    Get PDF
    &lt;i&gt;Haemonchus contortus&lt;/i&gt;, a highly pathogenic and economically important parasitic nematode of sheep, is particularly adept at developing resistance to the anthelmintic drugs used in its treatment and control. The basis of anthelmintic resistance is poorly understood for many commonly used drugs with most research being focused on mechanisms involving drug targets or drug efflux. Altered or increased drug metabolism is a possible mechanism that has yet to receive much attention despite the clear role of xenobiotic metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a large family of drug-metabolising enzymes present in almost all living organisms, but for many years thought to be absent from parasitic nematodes. In this paper, we describe the CYP sequences encoded in the &lt;i&gt;H. Contortus&lt;/i&gt; genome and compare their expression in different parasite life-stages, sexes and tissues. We developed a novel real-time PCR approach based on partially assembled CYP sequences “tags” and confirmed findings in the subsequent draft genome with RNA-seq. Constitutive expression was highest in larval stages for the majority of CYPs, although higher expression was detected in the adult male or female for a small subset of genes. Many CYPs were expressed in the worm intestine. A number of &lt;i&gt;H. Contortus&lt;/i&gt; genes share high identity with &lt;i&gt;Caenorhabditis elegans&lt;/i&gt; CYPs and the similarity in their expression profiles supports their classification as putative orthologues. Notably, &lt;i&gt;H. Contortus&lt;/i&gt; appears to lack the dramatic CYP subfamily expansions seen in &lt;i&gt;C. elegans&lt;/i&gt; and other species, which are typical of CYPs with exogenous roles. However, a small group of &lt;i&gt;H. Contortus&lt;/i&gt; genes cluster with the &lt;i&gt;C. elegans&lt;/i&gt; CYP34 and CYP35 subfamilies and may represent candidate xenobiotic metabolising genes in the parasite

    Analysis of putative resistance gene loci in UK field populations of Haemonchus contortus after six years of macrocyclic lactone use

    Get PDF
    Sheep farmers in the UK rely on strategic anthelmintic use to treat and control gastrointestinal roundworms in their flocks. However, resistance to these drugs is now widespread and threatens the sustainability of sheep production. The mechanisms underlying resistance to the most commonly used class, the macrocyclic lactones, are not known and sensitive diagnostic tools based on molecular markers are not currently available. This prohibits accurate surveillance of resistance or assessment of strategies aimed at controlling its spread. In this study, we examined four UK field populations of Haemonchus contortus, differing in macrocyclic lactone treatment history, for evidence of selection at ‘candidate gene’ loci identified as determining macrocyclic lactone resistance in previously published research. Individual worms were genotyped at Hc-lgc-37, Hc-glc-5, Hc-avr-14 and Hc-dyf-7, and four microsatellite loci. High levels of polymorphism were identified at the first three candidate gene loci with remarkably little polymorphism at Hc-dyf-7. While some between-population comparisons of individual farms with and without long-term macrocyclic lactone use identified statistically significant differences in allele frequency and/or fixation index at the Hc-lgc-37, Hc-glc-5 or Hc-avr-14 loci, we found no consistent evidence of selection in other equivalent comparisons. While it is possible that different mechanisms are important in different populations or that resistance may be conferred by small changes at multiple loci, our findings suggest that these are unlikely to be major loci conferring macrocyclic lactone resistance on UK farms or suitable for diagnostic marker development. More powerful approaches, using genome-wide or whole genome sequencing, may be required to define macrocyclic lactone resistance loci in such genetically variable populations

    Evidence from two independent backcross experiments supports genetic linkage of microsatellite Hcms8a20, but not other candidate loci, to a major ivermectin resistance locus in Haemonchus contortus

    Get PDF
    Haemonchus contortus is the leading parasitic nematode species used to study anthelmintic drug resistance. A variety of candidate loci have been implicated as being associated with ivermectin resistance in this parasite but definitive evidence of their importance is still lacking. We have previously performed two independent serial backcross experiments to introgress ivermectin resistance loci from two H. contortus ivermectin-resistant strains – MHco4(WRS) and MHco10(CAVR) – into the genetic background of the ivermectin-susceptible genome reference strain MHco3(ISE). We have interrogated a number of candidate ivermectin resistance loci in the resulting backcross populations and assessed the evidence for their genetic linkage to an ivermectin resistance locus. These include the microsatellite marker Hcms8a20 and six candidate genes Hco-glc-5, Hco-avr-14, Hco-lgc-37 (previously designated Hco-hg-1), Hco-pgp-9 (previously designated Hco-pgp-1), Hco-pgp-2 and Hco-dyf-7. We have sampled the haplotype diversity of amplicon markers within, or adjacent to, each of these loci in the parental strains and fourth generation backcross populations to assess the evidence for haplotype introgression from the resistant parental strain into the genomic background of the susceptible parental strain in each backcross. The microsatellite Hcms8a20 locus showed strong evidence of such introgression in both independent backcrosses, suggesting it is linked to an important ivermectin resistance mutation in both the MHco4(WRS) and MHco10(CAVR) strains. In contrast, Hco-glc-5, Hco-avr-14, Hco-pgp-9 and Hco-dyf-7 showed no evidence of introgression in either backcross. Hco-lgc-37 and Hco-pgp-2 showed only weak evidence of introgression in the MHco3/4 backcross but not in the MHco3/10 backcross. Overall, these results suggest that microsatellite marker Hcms8a20, but not the other candidate genes tested, is linked to a major ivermectin resistance locus in the MHco4(WRS) and MHco10(CAVR) strains. This work also emphasises the need for genome-wide approaches to identify mutations responsible for the ivermectin resistance in this parasite

    Genotypic characterisation of monepantel resistance in historical and newly derived field strains of Teladorsagia circumcincta

    Get PDF
    Recent reports of monepantel (MPTL) resistance in UK field isolates of Teladorsagia circumcincta has highlighted the need for a better understanding of the mechanism of MPTL-resistance in order to preserve its anthelmintic efficacy in this economically important species. Nine discrete populations of T. circumcincta were genotypically characterised; three MPTL-susceptible isolates, three experimentally selected MPTL-resistant strains and three field derived populations. Full-length Tci-mptl-1 gene sequences were generated and comparisons between the MPTL-susceptible isolates, MPTL-resistant strains and one field isolate, showed that different putative MPTL-resistance conferring mutations were present in different resistant isolates. Truncated forms of the Tci-mptl-1 gene were also observed. The genetic variability of individual larvae, within and between populations, was examined using microsatellite analyses at 10 ‘neutral’ loci (presumed to be unaffected by MPTL). Results confirmed that there was little background genetic variation between the populations, global FST &lt;0.038. Polymorphisms present in exons 7 and 8 of Tci-mptl-1 enabled genotyping of individual larvae. A reduction in the number of genotypes was observed in all MPTL-resistant strains compared to the MPTL-susceptible strains that they were derived from, suggesting there was purifying selection at Tci-mptl-1 as a result of MPTL-treatment. The potential link between benzimidazole (BZ)-resistance and MPTL-resistance was examined by screening individual larvae for the presence of three SNPs associated with BZ-resistance in the β-tubulin isotype-1 gene. The majority of larvae were BZ-susceptible homozygotes at positions 167 and 198. Increased heterozygosity at position 200 was observed in the MPTL-resistant strains compared to their respective MPTL-susceptible population. There was no decrease in the occurrence of BZ-resistant genotypes in larvae from each population. These differences, in light of the purifying selection at this locus in all MPTL-resistant isolates, suggests that Tci-mptl-1 confers MPTL-resistance in T. circumcincta, as in Haemonchus contortus, but that different mutations in Tci-mptl-1 can confer resistance in different populations

    Hidden in plain sight - Multiple resistant species within a strongyle community

    Get PDF
    Ovine parasitic gastroenteritis is a complex disease routinely treated using anthelmintics. Although many different strongyle species may contribute to parasitic gastroenteritis, not all are equally pathogenic: in temperate regions, the primary pathogen is Teladorsagia circumcincta. In this study we investigated benzimidazole and ivermectin resistance on a commercial sheep farm in southeast Scotland. We assessed the impact of species diversity on the diagnosis of resistance using the faecal egg count reduction test and in vitro bioassays, and correlated the results with the frequency of benzimidazole resistance-associated genotypes measured in the T. circumcincta population by pyrosequencing of the β-tubulin isotype-1 gene. Faecal egg count reduction test results showed efficacies of 65% for albendazole and 77% for ivermectin, indicating moderate resistance levels on the farm. However, PCR speciation of the same populations pre- and post-treatment revealed that removal of susceptible species had masked the presence of a highly resistant population of T. circumcincta. Less than 25% of individuals in the pre-treatment populations were T. circumcincta, the remainder consisting of Cooperia curticei, Chabertia ovina, Oesophagostomum venulosum and Trichostrongylus spp. In contrast, post-treatment with albendazole or ivermectin, the majority (88% and 100% respectively) of the populations consisted of T. circumcincta. The egg hatch test for benzimidazole resistance and the larval development test for ivermectin resistance were carried out using eggs obtained from the same populations and the results were broadly consistent with the faecal egg count reduction test. Thirty individual T. circumcincta from each sampling time point were assessed for benzimidazole resistance by pyrosequencing, revealing a high frequency and diversity of resistance-associated mutations, including within the population sampled post-ivermectin treatment. These results highlight the potential diversity of parasite species present on UK farms, and their importance in the diagnosis of anthelmintic resistance. On this particular farm, we demonstrate the presence of a highly dual-resistant population of T. circumcincta, which was strongly selected by treatment with either benzimidazoles or ivermectin, while other potentially less pathogenic species were removed

    Wormer resistance and moxidectin use in Scottish sheep flocks (WORMSS project)

    Full text link
    Data was gathered during 2021 from 76 sheep farmers across Scotland, focusing on their use and understanding of the ectoparasiticide, moxidectin in their flock. In addition, it contains data from post-moxidectin treatment sheep faecal samples collected from sheep treated by the farmer on six separate farms across Scotland. From each farm two sets of samples were collected, and the data contains information on the faecal egg counts and species identified using PCR of the ITS2 region. The data may be viewed and re-used by others

    Increased expression of a microRNA correlates with anthelmintic resistance in parasitic nematodes

    Get PDF
    Resistance to anthelmintic drugs is a major problem in the global fight against parasitic nematodes infecting humans and animals. While previous studies have identified mutations in drug target genes in resistant parasites, changes in the expression levels of both targets and transporters have also been reported. The mechanisms underlying these changes in gene expression are unresolved. Here, we take a novel approach to this problem by investigating the role of small regulatory RNAs in drug resistant strains of the important parasite Haemonchus contortus. microRNAs (miRNAs) are small (22 nt) non-coding RNAs that regulate gene expression by binding predominantly to the 3′ UTR of mRNAs. Changes in miRNA expression have been implicated in drug resistance in a variety of tumor cells. In this study, we focused on two geographically distinct ivermectin resistant strains of H. contortus and two lines generated by multiple rounds of backcrossing between susceptible and resistant parents, with ivermectin selection. All four resistant strains showed significantly increased expression of a single miRNA, hco-miR-9551, compared to the susceptible strain. This same miRNA is also upregulated in a multi-drug-resistant strain of the related nematode Teladorsagia circumcincta. hco-miR-9551 is enriched in female worms, is likely to be located on the X chromosome and is restricted to clade V parasitic nematodes. Genes containing predicted binding sites for hco-miR-9551 were identified computationally and refined based on differential expression in a transcriptomic dataset prepared from the same drug resistant and susceptible strains. This analysis identified three putative target mRNAs, one of which, a CHAC domain containing protein, is located in a region of the H. contortus genome introgressed from the resistant parent. hco-miR-9551 was shown to interact with the 3′ UTR of this gene by dual luciferase assay. This study is the first to suggest a role for miRNAs and the genes they regulate in drug resistant parasitic nematodes. miR-9551 also has potential as a biomarker of resistance in different nematode species
    corecore