
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Laing, Roz (2010) The cytochrome P450 family in the parasitic nematode 
Haemonchus contortus. PhD thesis. 
 
 
http://theses.gla.ac.uk/2355/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/2355/


 
 

 
 
 

The cytochrome P450 family in the parasitic 
nematode Haemonchus contortus 

 
 
 
 
 
 
 
 

 
Roz Laing BSc (Hons) BVMS 

 

Institute of Infection and Immunity 
Faculty of Veterinary Medicine 

University of Glasgow 
 
 
 
 

 
 
 
 
 
 

Submitted in fulfilment of the requirements for the degree 
of Doctor of Philosophy at the University of Glasgow 

 
September 2010 



ii 

Abstract 

Haemonchus contortus, a parasitic nematode of sheep, is unsurpassed in its 

ability to develop resistance to the anthelmintic drugs used as the mainstay of 

its control. A reduction in drug efficacy leads to prophylactic and therapeutic 

failure, resulting in loss of productivity and poor animal welfare. This situation 

has reached crisis point in the sheep industry, with farms forced to close their 

sheep enterprises due to an inability to control resistant nematodes.   

The mechanisms of anthelmintic resistance are poorly understood for many 

commonly used drugs. Altered or increased drug metabolism is a possible 

mechanism, yet has received little attention despite the clear role of xenobiotic 

metabolism in pesticide resistance in insects. The cytochrome P450s (CYPs) are a 

large family of drug-metabolising enzymes present in all species. Their 

expression is induced on exposure to their substrate and over-expression of a 

single CYP has been shown to confer multi-drug resistance in insects.  

The H. contortus genome is currently being sequenced and assembled at the 

Wellcome Trust Sanger Institute, Cambridge. Despite the lack of a completed 

genome, the public provision of read, contig and supercontig databases has 

facilitated the identification of 73 partial gene sequences representing a large 

family of H. contortus CYPs. Their constitutive expression is highest in larval 

stages although adult expression was also detected. The majority of CYPs are 

most highly expressed in the worm intestine, which is thought to be the main 

organ of detoxification in nematodes and is consistent with a role in xenobiotic 

metabolism. A small number of CYPs were more highly expressed in anthelmintic 

resistant isolates than in an anthelmintic-susceptible isolate and may represent 

candidate genes for further research. The identification of putative H. contortus 

orthologues of the Caenorhabditis elegans nuclear hormone receptors controlling 

CYP transcription and the cytochrome P450 reductase gene catalysing electron 

transfer to CYPs suggests that regulatory and functional pathways may be 

conserved between the species. 

Transcriptome analysis using next generation sequencing was undertaken to 

guide a pilot annotation of 590 Kb genomic sequence. A high degree of 
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conservation was observed between the conceptual translations of H. contortus 

and C. elegans genes, although at a genomic level, H. contortus consistently had 

a larger number and size of introns, which may reflect a larger genome than 

previously predicted. Gene order was not conserved, although regions of 

microsynteny were present and a bias for intra-chromosomal rearrangements 

resulted in putative orthologues frequently residing on the corresponding 

chromosome in both species. Partial conservation of a number of C. elegans 

operons in H. contortus was identified. These findings have important 

implications for the H. contortus genome project and the transcriptome 

databases provide a valuable resource for future global comparisons of gene 

expression. 
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1  General Introduction 

Parasitic disease affects humans and livestock worldwide. More than a third of 

the world’s population are infected with parasites and one person in four 

harbours a hookworm infection (www.who.int/wormcontrol/en/). An estimated 

300 million people are severely ill with parasitic disease, but as the infections 

are often insidious in nature, the impact of chronic ill health is thought to be 

even greater. 

Parasitism in livestock further impacts on human health by resulting in 

significant production losses for stock keepers throughout the world relying on 

livestock as a source of income and nutrition (Krecek and Waller 2006). Many 

parasitic diseases are also zoonoses (www.who.int/zoonoses/en/). 

The negative effect of parasitism on animal welfare is also significant. Chronic 

infections with gastrointestinal (GI) nematodes are common in sheep and cattle 

worldwide, causing weight loss, diarrhoea, inappetance, depression, anaemia 

and hypoproteinaemia, with acute infections resulting in death (Holmes 1985). 

1.1 Drug resistance in parasites 

The control of parasitic disease in livestock generally relies on strategic dosing 

with anthelmintics. However, resistance to the three most widely used classes of 

anthelmintic drugs: the benzimidazoles, the imidazothiazoles and the 

macrocyclic lactones, is now widespread and resistance to the two newer 

classes, the amino-acetonitrile derivatives (AADs) and paraherquamide 

derivatives, is expected to follow (Kaminsky 2003, Kaplan 2004, Kaminsky et al 

2008, Zinser et al 2002).  

Anthelmintic resistance is currently a major constraint to the sheep industry 

worldwide (Jackson and Coop 2000, Waller 1997). Although resistance in horses 

and cattle has not yet reached the level seen in small ruminants, it is an 

emerging problem (Kaplan 2004). There are only sporadic reports of anthelmintic 

resistant nematodes in humans, but nonetheless, it is thought to be an important 

public health concern due to the potential rapidity of its spread (as observed in 
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nematodes of sheep) and the lack of diagnostic tools and safe effective 

treatments should it arise (Geerts and Gryseels 2000). 

Anthelmintic resistance was first reported in the 1950s, in the sheep nematode 

Haemonchus contortus to the drug phenothiazine (Drudge et al 1957). The first 

benzimidazole (BZ), thiabendazole, was released in 1961 and by 1964 resistance 

to this drug was reported, again in H. contortus (Conway 1964, Drudge et al 

1964). With the introduction of each new class of anthelmintic, this worrying 

pattern has continued, with resistance developing within 10 years of each drug 

being licensed for use (reviewed in Kaplan 2004). Table 1.1 charts the 

development of resistance to each class of anthelmintics in nematodes of sheep. 

Drug class Drug Year of approval First published report of resistance 

Benzimidazoles Thiabendazole 1961 1964 

Imidazothiazoles Levamisole 1970 1979 

Macrocyclic lactones Ivermectin 1981 1988 

  Moxidectin 1991 1995 

Table 1.1: Anthelmintic resistance in sheep. Adapte d from Kaplan (2004) 
 

Resistance to one drug in a class usually confers side-resistance to other 

members of the same group (Sangster 1999). Sheep nematodes resistant to all 

three classes have been now reported in the UK (Bartley et al 2004, Sargison et 

al 2001, Sargison et al 2007, Sargison et al 2010). The inability to control such 

‘triple-resistant’ nematodes threatens sheep production globally and triple-

resistant Teladorsagia circumcincta have already resulted in the closure of a 

sheep enterprise in South East Scotland (Sargison et al 2005). 

To confound matters further, once gained, there seems to be no reversion from 

resistance. In a controlled trial using a PCR genotyping approach, Leignel et al 

(2010) monitored the proportion of BZ-resistant T. circumcincta over two years 

and found this did not alter in fields grazed by lambs treated with levamisole (a 

non-BZ anthelmintic = counter-selection) or in fields grazed by lambs given no 

anthelmintic treatment. Further, in fields grazed by lambs treated with BZ alone 

or with alternate treatments of BZ and levamisole, the proportion of BZ resistant 

nematodes increased proportionally to the number of BZ treatments, regardless 

of the regime. These findings suggest neither counter selection nor alternate 

treatment offer solutions to reverse or halt the evolution of resistance. 
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1.1.1 Measuring resistance 

Anthelmintic resistance can be defined as ‘a heritable reduction in the 

sensitivity of a parasite population to the action of a drug’ (Geerts and Gryseels 

2000). However, the methods available to accurately detect this reduction in 

sensitivity are limited to certain parasite species and drug classes (Coles et al 

2006). 

The most widely used method to detect and monitor anthelmintic resistance is 

the faecal egg count reduction test (FECRT), which compares the number of 

nematode eggs in the faeces before and after anthelmintic treatment. This test 

can be used for all classes of anthelmintic drugs but varies in its suitability for 

different parasite species because the correlation between egg count and 

parasite burden varies e.g. higher correlation for H. contortus but lower for 

Trichostrongylus colubriformis, T. circumcincta and Nematodirus spp. (reviewed 

in Taylor et al 2002). But perhaps the main limitation of the FECRT is its lack of 

sensitivity: studies by Martin et al (1989) showed it is only reliable if more than 

25% of the worm population is resistant.  

Other available assays include the egg hatch test (EHT) for the detection of 

benzimidazole resistance and the larval development test (LDT) for the 

detection of benzimidazole and levamisole resistance (Coles et al 2006). 

Similarly to the FECRT, the EHT lacks reliability if less than 25% of the 

population are benzimidazole resistant (Martin et al 1989) and neither the EHT 

nor LDT are suitable for the detection of macrocyclic lactone resistance (Coles 

et al 2006). More recently, a standardised protocol for a larval migration 

inhibition test (LMIT) to detect ivermectin resistance has been developed 

(Demeler et al 2010). The test is capable of discriminating between IVM-

susceptible and IVM-resistant isolates of Ostertagia ostertagi, Cooperia 

oncophora and H. contortus in a reproducible manner, although its suitability for 

the detection of resistance in mixed populations remains to be evaluated. 

Molecular tests are the most sensitive means of detecting anthelmintic 

resistance, but are currently only available for benzimidazole resistance, as the 

mechanisms of imidazothiazole and macrocyclic lactone resistance are yet to be 

fully elucidated (see Section 1.2). Benzimidazole resistance is most commonly 
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conferred by a phenylalanine to tyrosine mutation at amino acid 200 in β-tubulin 

isotype-I, which can be detected in resistant but not susceptible populations of 

H. contortus and T. colubriformis with allele specific PCR (Kwa et al 1994). The 

frequency of this single nucleotide polymorphism (SNP) in pooled samples of H. 

contortus L3 larvae can also be measured with real-time PCR and 

pyrosequencing and used to assess the benzimidazole resistance status of 

different H. contortus populations (von Samson-Himmelstjerna et al 2009).  

Such sensitive molecular tests are desperately needed for the detection of 

resistance for all classes of anthelmintic, in order to effectively manage and 

control parasitic disease at an individual farm level and to preserve the efficacy 

of the anthelmintics globally (Coles et al 2006, Gilleard 2006, Gilleard and Beech 

2007, Kaplan 2004, Prichard 1990, von Samson-Himmelstjerna and Blackhall 

2005, Sangster et al 2002, Sargison et al 2010). This requires a better 

understanding of the mode of action of each anthelmintic and knowledge of the 

underlying mutations that confer resistance. 

1.2 Anthelmintics 

1.2.1 Benzimidazoles 

The benzimidazoles (BZs) are the oldest of the three anthelmintic classes and 

their widespread use has resulted in the development of BZ-resistance in sheep 

and horses throughout the world (Kaplan 2004). BZs act by binding to nematode 

tubulin and disrupting microtubule formation (Prichard 1990). Knowledge of the 

genetic basis of resistance is most advanced for this group: single nucleotide 

polymorphisms (SNPs) encoding an amino acid change from phenylalanine to 

tyrosine at codons 167 and 200 of β-tubulin isotype-I appear to play a major role 

in the mechanism of BZ resistance (Kwa et al 1994). The significance of each SNP 

may vary between species (von Samson-Himmelstjerna et al 2003) and similar 

mutations in β-tubulin isotype-II may also confer BZ resistance (Prichard, 2001) 

(as can deletion of β-tubulin isotype-II (Kwa et al 1993)), but the TCC to TAC 

mutation at codon 200 appears to be a reliable marker for BZ-resistance in H. 

contortus and T. colubriformis (Kwa et al 1994, von Samson-Himmelstjerna et al 

2009). 
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1.2.2 Imidazothiazoles 

Imidazothiazoles such as levamisole (LEV) were introduced to the market in the 

1970s. Their major mode of action is as nicotinic acetylcholine receptor (AChR) 

agonists, which result in opening of cationic (Na+ and K+) channels and 

depolarisation of nematode muscle cell membranes (Prichard 2001).  

Resistance to LEV is thought to be due to changes in the AChR (Sangster et al 

1998). In C. elegans, AChRs are formed by the association of five essential 

subunits encoded by the genes unc-38, unc-63, lev-8, unc-29 and lev-1 (Boulin et 

al 2008). In H. contortus, T. circumcincta and T. colubriformis, orthologues or 

paralogues of all genes other than lev-8 have been identified and a comparison 

of LEV-susceptible and LEV-resistant nematodes identified the expression of an 

abbreviated unc-63 transcript associated with the resistant phenotype in all 

three species (Neveu et al 2010).  

1.2.3 Macrocyclic lactones 

The macrocyclic lactone (ML) class consists of two drug groups sharing a similar 

structure and action: the avermectins, such as ivermectin (IVM), and the 

milbemycins, such as moxidectin (MXD). Drugs from both groups are widely used 

in veterinary medicine and IVM is the core drug for the treatment and control of 

onchocerciasis (river blindness) in humans (Taylor and Greene 1989). 

MLs are thought to target ligand-gated chloride channels, acting as γ-

aminobutyric acid (GABA) receptor antagonists (Holden-Dye and Walker 1990) 

and glutamate-gated chloride (GluCl) channel agonists (Cully et al 1994, Dent et 

al 1997). The drug concentration required for a GABA-antagonistic effect is 

considerably higher than for a GluCl-agonist effect so the latter may be the 

clinically relevant mode of action (Yates et al 2003).  

The effect of IVM-exposure on the parasite is paralysis of the pharynx, body wall 

and uterus, with the pharyngeal muscles affected at a lower concentration than 

the somatic muscles (Geary et al 1993), which may relate to differing 

sensitivities and distributions of ligand-gated chloride channels (Prichard 2001). 

In C. elegans, the sensitivity of the pharynx to IVM is thought to be dependant on 
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the presence of a GluCl α-subunit, avr-15 (Dent et al 1997). High-level IVM 

resistance is observed in avr-15 mutants with concurrent mutations in two 

additional genes encoding GluCl α-subunits, avr-14 and glc-1, but little or no 

resistance is conferred if mutations are present in only two of the three genes 

(Dent et al 2000). 

In H. contortus, resistance to the MLs has been associated with selection at both 

GluCl channel and GABA receptor loci (Blackhall et al 1998b,Blackhall et al 2003) 

as well as at the locus of a P-glycoprotein (PGP), a multi-drug efflux pump 

(Blackhall et al 1998a). Increased expression of a PGP has also been detected in 

IVM-selected strains of the parasite (Xu et al 1998). None of these mutations 

have, however, been found to be widespread in field populations of IVM-

resistant H. contortus (Gilleard and Beech 2007), so the mechanism of resistance 

disrupting anthelmintic therapy in the field remains unclear. 

1.2.4 New anthelmintics 

Subsequent to the emergence of resistance to the three main classes of 

anthelmintic, two new anthelmintics with differing modes of action have been 

licensed and marketed for use in small ruminants. The first, monepantel, is an 

amino-acetonitrile derivative (AAD) and targets the nematode-specific deg-3 

acetylcholine receptor (AChR) family (Kaminsky et al 2008, Rufener et al 2009). 

Monepantel is currently effective against nematodes resistant to all other classes 

of anthelmintic in the field, but in vitro experiments have shown H. contortus 

exposed to sub-lethal concentrations of the drug can develop resistance through 

loss-of-function Hco-mptl-1 gene mutations (Rufener et al 2009).  

The second anthelmintic, derquantel, is a paraherquamide derivative and 

targets nicotinic AChRs. Unlike the imidazothiazoles, which are nicotinic AChR 

agonists, derquantel has an antagonistic action and preferentially targets the B-

subtype of the receptor rather than the L-subtype target of LEV (Qian et al 2006, 

Zinser et al 2002). Derquantel has been licensed as a combination product with 

the ML abamectin, and this formulation is currently effective against nematodes 

resistant to other classes of anthelmintic (Little et al 2010). 
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1.3 Alternative methods of parasite control 

All anti-parasitic drugs will be expected, with time, to succumb to anthelmintic 

resistance, so it is vitally important that the efficacy of currently available drugs 

is preserved by developing sustainable programmes for their use (Jackson and 

Coop 2000, von Samson-Himmelstjerna and Blackhall 2005). Management 

practices such as reducing the frequency of treatment, avoiding under-dosing 

and rotating the class of anthelmintic used may slow the development of 

resistance (Jackson and Coop 2000) but novel methods of parasite control, which 

do not rely on chemotherapeutics, could offer a valuable alternative or adjunct 

to anthelmintic treatment (Sayers and Sweeney 2005). These include the 

breeding of resilient or nematode-tolerant sheep, biological control with 

nematophagous microfungi (Larsen 2006), and nematode vaccines (Knox et al 

2003). However, none of these methods are suitable for the treatment of severe 

life-threatening parasite infection and for the present and near future, the 

mainstay of treatment is likely to depend on the use of chemotherapeutics 

(Kaplan 2004). 

1.4 The parasitic nematode H. contortus 

Haemonchus contortus is the most important nematode of small ruminants 

worldwide. It is a blood-feeding gastro-intestinal nematode causing severe 

disease and loss of production in sheep, goats and cattle (Urquhart et al 1996). 

As a clade V Strongyloid (see Figure 1.1), it shares a close phylogenetic 

relationship with a number of the most economically significant parasites of 

grazing ruminants, with human hookworm species, and with the model nematode 

Caenorhabditis elegans (Blaxter et al 1998, Gilleard 2004). 

Infection with H. contortus is most common in the tropics and subtropics and 

other regions dominated by summer rainfall, but is becoming increasingly 

prevalent in Europe (O'Connor et al 2006). Larvae can undergo arrested 

development within the host at the L4 stage to survive cold winters, resulting in 

sporadic outbreaks of haemonchosis in the UK, France, Denmark, Sweden and 

the Netherlands, but the impact of milder wetter winters and ineffective 

worming practices in the face of increasing resistance are thought to have  
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Figure 1.1: Nematode phylogenetic tree showing parasite species affecting animals and 
humans. Adapted from Blaxter et al 1998 and Coghlan 2005. Roman numerals relate to five 
clades of the phylum Nematoda deduced from analysis of small subunit ribosomal DNA 
sequence. Parasites that do not infect animals or humans but are discussed in this thesis are 
marked *. 
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contributed to an increasing economic importance of the parasite in these 

regions (Waller et al 2006). 

H. contortus has a typical trichostrongyloid lifecycle (Urquhart et al 1996): adult 

worms reside in the abomasum and produce eggs which are released in the 

faeces. These hatch and develop into L1, L2 and then infective L3 larvae, which 

are ingested by the grazing ruminant. L3 larvae exsheath in the host abomasum 

then moult twice to become L4 larvae then adult worms (see Figure 1.2). 

Temperature and moisture are the most important factors in the development of 

eggs to the infective L3 stage, which can occur in as little as three days under 

optimum conditions (O'Connor et al 2006). The pre-patent period is 2-3 weeks in 

sheep and four weeks in cattle (Urquhart et al 1996). As mentioned, the L4 stage 

can undergo arrested development in adverse conditions e.g. host immunity, 

then spontaneously resume development when exposed to a trigger e.g. host 

immune suppression. This can result in clinical haemonchosis 4-6 months after 

infection. 

infective L3 on pasture                  L2                   L1 eggs released in faeces

L3 ingested by grazing ruminant                 L4              adult worms in abomasum

 

Figure 1.2: H. contortus lifecycle. Adult worms reside in the abomasum and produce eggs 
which are released in the faeces. Eggs hatch and develop on the pasture to the infective L3 
stage, which is ingested by the grazing ruminant. This is a typical trichostrongyloid direct 
lifecycle with a 2-3 week pre-patent period in sheep. 

 

H. contortus adult worms are prolific breeders: one female can produce up to 

10,000 eggs per day (Prichard 2001) and each host can harbour thousands of 
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adult worms. Infection with H. contortus results in hyperacute, acute or chronic 

disease depending on the worm burden. Infection with up to 30,000 worms can 

cause hyperacute haemonchosis with severe haemorrhagic gastritis resulting in 

sudden death. More commonly, infections of 2000-20,000 (acute haemonchosis) 

result in severe anaemia, hypoproteinaemia, oedema and death. Chronic 

haemonchosis, from infections of several hundred worms, results in progressive 

weight loss and weakness, while subclinical infections may manifest only in 

reduced productivity. Diarrhoea is not normally observed (Urquhart et al 1996). 

Anthelmintics are the main weapon in the treatment and prevention of 

haemonchosis but, as described above, H. contortus is frequently the first 

nematode to develop resistance to the drugs used in its control. The mechanisms 

by which anthelmintic resistance evolves are unclear. It may be a pre-adaptive 

phenomenon with the genes conferring resistance existing in the population 

before exposure to the drug (Jackson and Coop, 2000) in which case, the 

extremely high level of genetic diversity identified in different populations of H. 

contortus (see below) may explain the parasite’s propensity to rapidly develop 

resistance. Alternative mechanisms include a new mutation occurring and 

spreading through the population under selection pressure, or multiple recurrent 

mutations arising in different populations under selection (Gilleard and Beech 

2007, Skuce et al 2010). Again, the genetic diversity of H. contortus is suggestive 

of a highly plastic genome, which would be predicted to promote the 

development of resistance by these methods too.  

1.4.1 Genetic diversity of H. contortus 

Extremely high levels of genetic diversity have been reported in many species of 

nematodes (reviewed in: Blouin 1998, Gilleard and Beech 2007). In the case of 

H. contortus, this high genetic diversity is predicted to be a result of a large 

population size, rapid rate of reproduction and wide geographical spread 

(Prichard 2001). The naturally large population size of H. contortus is thought to 

be further increased by host movement; work by Blouin et al (1995) found the 

variation in mitochondrial DNA sequence in H. contortus populations across four 

North American states was higher within populations than between populations 

which would be consistent with a very high gene flow and thus a large effective 
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population size. With the limited range of dispersal of the free-living stages, this 

was predicted to be a result of extensive movement of sheep between 

farms/states. The worrying implication of this for the spread of resistance 

alleles was also highlighted. 

Analysis of mitochondrial DNA sequence and amplified fragment length 

polymorphism (AFLP) has since identified high genetic differentiation between 

H. contortus populations from 14 different countries, but again genetic 

difference between different populations from the same continent was lower 

than that between individuals of the same population suggestive of a large 

effective population size (Troell et al 2006). More recently, microsatellite 

analysis of five different laboratory isolates showed a high degree of genetic 

differentiation, concurrent with the expected barrier to gene flow implicit in the 

maintenance of laboratory isolates (Redman et al 2008b).  

1.4.2 H. contortus isolates 

The nomenclature described by Redman et al (2008b) has been adopted for this 

project. The prefix ‘MHco’ identifies isolates which have been maintained by 

experimental infection at The Moredun Research Institute.   

The MHco1 (MOSI) isolate, also known as SE, was originally isolated in East Africa 

in the 1950s. This isolate is fully susceptible to all classes of anthelmintic. 

MHco3 (ISE) is an inbred laboratory isolate derived from progeny of a single adult 

female of the MHco1 (MOSI) isolate. This is the reference isolate for the H. 

contortus genome project (see Section 1.4.3). 

MHco4 (WRS) is the White River Strain isolate from South Africa and is resistant 

to ivermectin, benzimidazoles, rafoxanide and closantel (van Wyk and Malan 

1988). 

MHco10 (CAVR) is the Chiswick Avermectin Resistant Strain, a field isolate from 

Australia, which is resistant to ivermectin. It also shows a low level of resistance 

to the benzimidazoles, but is sensitive to levamisole and closantel. Males of the 
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MHco10 (CAVR) isolate appear to be more sensitive to the effects of ivermectin 

than females (Le Jambre et al, 1995). 

1.4.3 The H. contortus genome project 

H. contortus has a haploid genome of five pairs of autosomal chromosomes with 

two X chromosomes in the female and one in the male (Redman et al 2008a). 

Leroy et al (2003) predicted the size of the genome to be ~53 Mb using flow 

cytometry, but current genome assembly data suggest it may be closer to 300 Mb 

(pers. com. Dr M Berriman). 

The H. contortus genome project, an open resource provided by The Wellcome 

Trust Sanger Institute (WTSI), is sequencing and analysing the nuclear genome of 

the adult MHco3 (ISE) isolate (www.sanger.ac.uk/Projects/H_contortus). To 

date, ~1.25Gb reads of genomic sequence have been generated with a 

combination of capillary and 454 sequencing. This is currently available as a read 

database, a contig database (N50=2370) and a supercontig database (N50=9901), 

where N50 represents the size of the smallest contig in the minimum set of 

largest contigs whose sizes total 50% of all sequence in the database. An 

additional 2.24Mb sequence has been generated with capillary sequencing of 22 

Bacterial Artificial Chromosome (BAC) inserts.  

The concurrent WTSI H. contortus EST project has generated a database of 

25,000 cDNAs. The ability to detect over 95% of the ~6000 single cluster ESTs in 

the H. contortus genomic databases suggest coverage is good (pers. com. Dr G 

Saunders), so the N50 values for both the contig and supercontig databases are 

unexpectedly small. This may reflect a high level of genetic variation present 

within the population, despite the use of the inbred MHco3 (ISE) isolate.  

1.4.4 C. elegans as a model nematode 

Genomic and technical resources for parasitic nematodes are greatly lacking 

(Geary and Thompson 2001, Gilleard 2004, Hashmi et al 2001). By and large, 

their development has been impeded by the lack of an in vitro culture system, 

so the availability of a free-living model nematode is a valuable alternative. 
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C. elegans has many innate qualities that make it suitable for use as a model 

organism. These include its ease of propagation, short generation cycle, large 

brood size, short lifespan, and transparency at all stages of development. It now 

has a fully sequenced genome, freely accessible online, and techniques for 

chemical mutagenesis and RNA interference (RNAi) have been developed to 

facilitate forward and reverse genetics respectively (Silverman et al 2009). C. 

elegans has also proven useful as a heterologous transformation system, 

expressing parasite promoter sequences and genes to study expression and 

function (reviewed in: Gilleard 2004, Hashmi et al 2001). 

The major factors dictating the suitability of C. elegans as a model are the 

evolutionary distance between it and the species of interest, and the particular 

aspect of biology under investigation. Blaxter et al (1998) divided the phylum 

Nematoda into five clades based on phylogenetic analysis of 53 small subunit 

ribosomal DNA sequences, with Caenorhabditis residing in clade V (see Figure 

1.1). It is likely that work with C. elegans will be highly applicable to other 

nematodes residing in clade V (Gilleard 2004) such as Ancylostoma, Necator, 

Haemonchus, Ostertagia, Trichostrongylus and Nippostrongylus, all of which are 

important parasites of humans or animals.  

This however, does not preclude the use of C. elegans as a model for more 

distantly related species, as core biological pathways may be widely conserved. 

When utilised as a model for human pathology, homologues in C. elegans are 

identifiable for 40-75% human disease-related genes (reviewed in Silverman et al 

2009). 

For comparative studies in parasitic nematodes, C. elegans offers the advantage 

of sharing characteristics of interest such as a protective cuticle and 

development into a dauer stage (Hashmi et al 2001) and, as highlighted by 

Gilleard (2004), many biological characteristics that are shared between C. 

elegans and parasitic nematodes are not conserved in mammals, and as such are 

clear targets for control strategies. In contrast, the model worm is less likely to 

be useful for characteristics associated with a parasitic lifestyle, but the 

elucidation of these differences themselves may be of vital use in the 

identification of elements essential to parasitism.  
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Most of our understanding of anthelmintic mode of action was derived from 

investigations of drug resistance in C. elegans. The mechanisms of BZ, ML and 

levamisole function were all elucidated through work on the model worm. In the 

case of research into anthelmintic resistance, it may not be possible to directly 

extrapolate C. elegans data for parasitic nematodes since a species living in a 

controlled laboratory environment may tolerate resistance phenotypes that are 

incompatible with a parasitic lifestyle (Geary and Thompson, 2001). However, 

this approach can be used to identify candidate mutations for further 

investigation and the growing body of research based on comparative and 

transgenic studies with C. elegans continues to prove its value as a model 

organism. For closely related species such as H. contortus, the application of C. 

elegans genetic and genomic tools is expected to be particularly enlightening. 

1.5 Drug transfer and metabolism in nematodes 

1.5.1 Drug absorption 

Anthelmintic drugs can enter parasitic nematodes by either oral ingestion or 

transcuticular diffusion, but the latter is thought to be most important (Alvarez 

et al 2007). This is evidenced by the high concentrations of the BZ albendazole 

(ABZ) measured in adult H. contortus recovered from infected treated sheep 

despite the lack of detectible ABZ in the peripheral circulation of the host and 

only low levels detectible in the portal blood (Alvarez et al 2000). Passive 

diffusion occurs across the lipid components of the cuticle and the rate of 

transfer is thought to be dependant on the concentration gradient and 

lipophilicity of the specific drug (Alvarez et al 2001, Alvarez et al 2007). 

1.5.2 Drug metabolism and elimination 

There are three stages to the detoxification of xenobiotics: phase I metabolism, 

phase II metabolism, and excretion. Phase I metabolism increases the solubility 

of the target drug, usually by adding or uncovering a hydrophilic group and 

phase II metabolism further increases solubility of the xenobiotic with the 

conjugation of an exogenous compound. The third phase is active transport of 

the metabolite from the cell.  
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Cytochrome P450 enzymes (CYPs) are the main enzymes involved in phase I 

metabolism and oxidation reactions are most common (Cvilink et al 2009, 

Guengerich 2006). Other enzymes with primarily oxidase functions such as 

peroxidases, flavin-containing mono-oxygenases (FMOs), monoamine oxidase and 

xanthine oxidase may also catalyse phase I metabolism, as may enzymes with 

primarily endogenous functions such as hydrolases, medium and short chain 

dehydrogenases and aldo-keto reductases. 

In phase II metabolism, the solubility of the xenobiotic is increased further with 

the conjugation of glucuronic acid or glutathione catalysed by uridine 

dinucleotide phosphate glucuronosyl transferases (UGTs) and glutathione S 

transferases (GSTs) respectively. After the CYPs, the UGTs are the enzymes most 

commonly involved in xenobiotic metabolism (Cvilink et al 2009, Guengerich 

2006). Alternative phase II reactions include acetylation by N-acetyltransferase 

(NAT) and sulphation by sulphotransferases (SULTs). 

The resulting metabolite is then exported from the cell by ATP-binding cassette 

(ABC) transporters such as P-glycoproteins (PGPs). Excretion can occur after 

phase I metabolism and phase II metabolism can occur independently of phase I 

metabolism, but the full chronological succession of steps is thought to be the 

norm. The relative contribution of phase I and phase II reactions will vary 

depending on the structure of the individual compound (Glue and Clement 

1999). 

The CYPs, UGTs and GSTs are considered ubiquitous, as they have been 

identified in all organisms that have been tested for their presence (Cvilink et al 

2009). In C. elegans, 80 genes encoding CYPs, 72 genes encoding UGTs, 48 genes 

encoding GSTs and 68 genes encoding short chain dehydrogenases genes have 

been identified (Gotoh 1998, Lindblom and Dodd 2006).  

Enzymes involved in xenobiotic metabolism have their expression induced on 

exposure to their substrate (see Section 1.6.5). In C. elegans, this has facilitated 

investigation of pathways involved in drug metabolism through analysis of gene 

up-regulation in response to xenobiotic exposure. Menzel et al (2001) used a 

whole genome microarray approach to show induction of members of the C. 

elegans CYP, UGT and GST families in response to exposure to β-naphthoflavone.  
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In humans and animals, the enzymes and transporters involved with xenobiotic 

metabolism and their functions in biotransformation pathways have been well 

studied (de Groot 2006, Guengerich 2006). In nematodes, the identification of 

these proteins and/or orthologues of the genes that encode them and evidence 

of increased activity with exposure to a xenobiotic is suggestive that the same 

pathways may be conserved. However, there have only been a limited number of 

functional studies undertaken to confirm this. Further, the identification of a 

number of atypical metabolites (not seen in humans and animals) indicates that 

there may be nematode-specific and even nematode-species-specific pathways 

of biotransformation, warning against the assumption that knowledge of a 

pathway of xenobiotic metabolism in one species will be transferable to another 

(Cvilink et al 2009). 

1.6 Cytochrome P450s (CYPs) 

The CYPs are an ancient superfamily of enzymes, playing key roles in many 

biotransformation pathways. They act on both endogenous and exogenous 

substrates, catalysing steps in the biosynthesis and catabolism of steroids, 

retinoids, prostaglandins, bile acids and fatty acids and the detoxification of 

drugs, toxins and insecticides (Mansuy 1998, Nebert 1994, Nelson et al 1993, 

Thomas 2007). Their implication in the tolerance of and resistance to a range of 

xenobiotics in many organisms make them intriguing candidates for research into 

the mechanisms of parasite drug resistance. 

CYPs are capable of catalysing a remarkable range of substrates. This is partly 

due to the large size of the family, but is also due to the wide substrate diversity 

of a number of individual enzymes. Although some CYPs have specific individual 

substrates, especially those acting on endogenous compounds, many of those 

associated with xenobiotic metabolism have a much broader range. The 

metabolism of around 75% of drugs in clinical use can be undertaken by just five 

of the 57 human CYPs (Wienkers and Heath 2005b,Williams et al 2004) with one 

enzyme, CYP3A4, catalysing more than 50% of these reactions (Fujita 2004, 

Smith and Jones 1992). Some individual substrates can be also catalysed by a 

number of different CYPs, providing alternative routes of metabolism if one 

enzyme is deficient. A negative side effect of this versatility is that reactions 
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involving different substrates or alternative CYP pathways can vary in their 

efficiency and in the metabolites produced. Indeed, a number of these reactions 

can convert exogenous compounds into active carcinogens and CYPs are 

infamous for their lead role in human drug-drug interactions and drug side 

effects (Amacher 2010, Guengerich 2006). 

In addition to their wide substrate diversity, CYPs exhibit a remarkable catalytic 

versatility. Although they primarily act as mono-oxygenases, catalysing the 

transfer of one atom of molecular oxygen to a substrate and reducing the other 

to water, they also demonstrate oxidase, reductase, dehydrogenase, dehydrase 

and isomerase activity amongst others. In total, CYPs have been shown to 

catalyse at least 60 chemically distinct reactions (Gillam 2008, Mansuy 1998).  

1.6.1 Location 

While prokaryotic P450s are soluble proteins, most eukaryotic P450s are 

membrane-bound enzymes associated with the endoplasmic reticulum and 

mitochondria. In humans, they are synthesised predominantly in the liver, 

followed by the small intestine, kidneys and adrenal glands. The most frequently 

implicated CYP in human drug metabolism, CYP3A4, is most highly expressed in 

the small intestine (Fujita 2004). 

In C. elegans, a number of CYPs are highly expressed in the intestine 

(Chakrapani et al 2008, Menzel et al 2001), which is thought to be the prime site 

of detoxification in nematodes (McGhee 2007). In Drosophila melanogaster, the 

main organs of detoxification are the midgut, Malpighian (renal) tubules and fat 

body and again, CYP expression is highest at these sites, with a small number of 

CYPs expressed most highly in the head, gonads and hindgut (Chung et al 2009). 

1.6.2 Structure 

Many CYP proteins are not amenable to structural analysis by experimental 

methods such as electron microscopy and x-ray crystallography, because they 

lack the pre-requisite solubility or ease of crystallisation necessary for such 

techniques. However, models have been generated for all human CYPs involved 
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in drug metabolism based on sequence comparison with bacterial and fungal 

CYPs of known crystal structure (de Groot 2006). 

CYP polypeptide sequences are highly divergent but are typically 450-500 amino 

acids in length. They are characterised by a heme-binding domain towards the 

C-terminus, containing a conserved cysteine ligand for the heme iron, and 

conserved PERF and K-helix domains (Poulos 2005, Tijet et al 2001). In the case 

of microsomal proteins, there is also a conserved N-terminal region for 

attachment to the microsomal membrane. Six especially diverse substrate 

recognition sites have also been identified and these constitute ~16% of the 

residues in the polypeptide (Gotoh 1992). See Figure 1.3. 

Cluster of basic residues

Cluster of Pro/Gly

C-helix WxxxR motif

I-helix groove with conserved T

ExLR motif

PERF motif

Heme-binding loop with conserved C

Substrate recognition sites

 

 

Figure 1.3: Conserved regions of a microsomal CYP. Adapted from Feyereisen 2005. 

 

Despite the sequence diversity, all CYP proteins have a highly conserved three-

dimensional structure. This is especially striking in light of the vast range of 

compounds the CYPs interact with, but a degree of flexibility in the secondary 

structure adopted for each compound is thought to facilitate this (Poulos 2005). 

The x-ray crystallography of Pseudomonas putida CYP450cam (bound to 

camphor) revealed that a number of dispersed amino acid sites throughout the 

protein interacted with the substrate. The resulting active binding site is well 

sequestered within the enzyme, requiring further dynamic fluctuations of the 

protein to expose this region for substrate-binding (Poulos et al 1987). It is 

hypothesised that individual CYPs acting on a range of compounds may be able 
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to change shape according to that of the substrate. The binding of a redox 

partner may also elicit structural change, triggering electron transfer and O2 

binding (reviewed in Poulos 2005). 

1.6.3 Nomenclature 

The standard nomenclature for CYPs is a number identifying the family, followed 

by a letter identifying the subfamily, then a number identifying each orthologous 

gene e.g. cyp13a1. Family members must share more than 40% amino acid 

identity, and members of a subfamily must share more than 55% amino acid 

identity, although for some the shared identity is as high as 99% (Nelson et al 

1993). To constitute an individual member, the amino acid sequence of a new 

CYP must differ from the others by more than 3% (Gotoh 1998). 

1.6.4 CYP family structure and evolution 

The human genome encodes 57 CYPs, which can be classified into 18 families 

and 42 sub-families. Enzymes in CYP1, CYP2 and CYP3 families are involved in 

the metabolism of xenobiotics, while members of the remaining families have 

important endogenous roles. These include fatty acid metabolism (CYP4), bile 

acid biosynthesis (CYP7) and steroid metabolism (CYP11, CYP17) amongst others 

(Amacher 2010, Gonzalez 1992). CYP families can be divided into those showing 

variation in family or subfamily size (CYP2, CYP3 and CYP4) and those that do 

not vary (all others), which may relate to the expansion of xenobiotic 

metabolising CYP families and the conservation of CYPs with endogenous 

functions (Nelson 1999) and is discussed further below. The families of CYPs with 

endogenous functions also appear more highly conserved between species and 

tend to demonstrate greater substrate and product specificities (Gonzalez 1992, 

Nelson et al 2004).  

In insects, CYPs are involved in the synthesis of the ecdysteroids and juvenile 

hormones, which regulate growth, development and reproduction. They also 

metabolise natural plant compounds, pesticides and insecticides, resulting in 

their detoxification (Feyereisen 2005). Insect CYPs can be divided into four 

clades: clade 2, clade 3, clade 4 and the mitochondrial clade (Feyereisen 2006). 

Clade 3 is the largest and encodes CYPs associated with xenobiotic metabolism 
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and insecticide resistance including the multi-drug resistance gene cyp6g1 (see 

Section 1.6.8), although some individual CYPs in clade 2, clade 4 and the 

mitochondrial clade have also been associated with xenobiotic metabolism. The 

clade 3 CYPs are most related to the mammalian CYP3 and CYP5 families, but 

appear to have undergone multiple insect-specific expansions. 

Nematodes were historically thought to lack CYPs (Barrett 1998, Pemberton and 

Barrett 1989, Precious and Barrett 1989a,Precious and Barrett 1989b) but the 

sequencing of the C. elegans genome revealed a large CYP family of 80 CYPs of 

15 families and 24 subfamiles (www.wormbase.org). Gotoh (1998) classified C. 

elegans CYPs into three clades: clade A is most closely related to the mammalian 

CYP2 family, clade B to the mammalian CYP3 and CYP5 families and clade C to 

the mammalian CYP4 family. The functions of most C. elegans CYPs are 

unknown, but essential roles in signalling pathways have been identified for a 

small number. cyp22a1 (daf-9) in clade A is associated with dauer formation, fat 

deposition and gonadal development (Gerisch et al 2001, Gerisch and Antebi 

2004), cyp33e2 in clade A and cyp29a3 in clade C are associated with 

eicosapentaenoic acid metabolism, and cyp31a2 and cyp31a3 in clade C are 

associated with eggshell lipid production and embryo polarisation (Benenati et al 

2009). Some members of clade A (cyp35 family, cyp14a3, cyp14a5, cyp33c2, 

cyp33e1, cyp34a9), clade B (13a7) and clade C (cyp29a2) are inducible on 

exposure to xenobiotics (Chakrapani et al 2008, Menzel et al 2001, Menzel et al 

2005).  

Characteristics of the CYP superfamily suggest it is evolving rapidly. After 75-90 

MY of divergence, only 34 putative CYP orthologues can be identified in the 

human and mouse genomes, relative to a whole genome comparison assigning 

80% of all predicted proteins to orthologous pairs (Nelson et al 2004, Waterston 

et al 2002). In the Drosophila genus, divergence over 60 MY has resulted in only 

a third of the 53 CYPs studied having 1:1 orthologues in 11 species (Chung et al 

2009) and in nematodes, a comparison of C. elegans, C. briggsae and C. remanei 

CYPs finds only 38% have 1:1 orthologues after 80-110 MY divergence (Thomas 

2007). 

CYP diversity is a result of successive gene duplications followed by sequence 

divergence and this has resulted in clusters of CYP genes in mammals, insects 
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and nematodes (Nelson et al 2004, Thomas 2006, Thomas 2007, Tijet et al 

2001). These ‘CYP blooms’ affect different subfamilies in different species and 

are one of the most striking characteristics of CYP evolution (Feyereisen 2010). A 

comparison of human and mouse CYPs, shows a number of CYP subfamilies, such 

as cyp2c, have expanded in the mouse, resulting in a total of 102 mouse CYPs 

relative to 57 human CYPs (Nelson et al 2004).  

There appears to be a distinct pattern of selection for expansion in some CYP 

subfamilies and selection against expansion in others. In an analysis of ten 

vertebrate genomes, Thomas (2007) found all CYPs with known endogenous 

substrates to be ‘phylogeneticaly stable’ and characterised by few or no gene 

duplications or losses, while CYPs with a role in xenobiotic detoxification were 

‘phylogenetically unstable’, residing in a few dense gene clusters. Similarly in 

insects, 80% of D. melanogaster CYPs expressed in organs of detoxification were 

classified as unstable, while only 27% of CYPs expressed in other body tissues 

were unstable (Chung et al 2009). The same study used an RNAi screen to show 

that eight out of nine phylogenetically stable CYPs had essential endogenous 

functions. 

In vertebrates, unstable CYP genes also appear to be affected by positive 

selection for amino acid substitutions, particularly in substrate-binding regions 

(Thomas 2007). This may also be true in nematodes as Gotoh (1998) observed 

the highest rate of nonsynonymous versus synonymous nucleotide changes in the 

central region encoding putative substrate recognition sites in closely related C. 

elegans CYPs.  

The high frequency of gene duplication and divergence observed in xenobiotic-

metabolising CYPs is consistent with a mechanism of adaptive evolution to cope 

with changing environmental conditions: the clusters of closely related CYPs 

could be considered as the ‘raw materials’ for selection to act upon.  

1.6.5 Transcriptional regulation of CYPs 

The expression of individual CYPs can be increased in response to exposure to 

their substrate. In vertebrates, this mechanism is primarily regulated by nuclear 

receptors (NRs), which reside in the cell cytoplasm. When activated, the NR 
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binds to a DNA response element in the promoter region of the target gene, 

inducing its mRNA expression (Amacher 2010). In humans, three of these 

transcription factors, aryl hydrocarbon receptor (AhR), pregnane X receptor 

(PXR) and constitutive androstane receptor (CAR), are most important in 

regulating the expression of xenobiotic-metabolising CYPs (Amacher 2010, 

Waxman 1999, Xu et al 2005). Activity of CYP3A4, the most abundantly 

expressed human CYP and the enzyme responsible for the metabolism of the 

majority of clinical drugs, is highly dependent on PXR, which in turn is activated 

by a particularly diverse range of xenobiotics and dietary compounds. CYP3A4 is 

also activated by a number of other NRs including CAR and it is thought that a 

degree of cross-talk between NRs determines final CYP expression (Urquhart et 

al 2007, Waxman 1999). In addition to inducing expression of CYPs, the 

xenosensor NRs can simultaneously up-regulate a number of phase II 

metabolising genes, including UGTs, GSTs and SULTs, and phase III drug 

transporters (Amacher 2010). 

Three genes encoding NRs with homology to PXR and CAR have been identified in 

C. elegans; daf-12, nhr-48 and nhr-8 (Maglich et al 2001). DAF-12 is involved in 

the dauer pathway, the function of NHR-48 is currently unknown and NHR-8 is 

thought to play a role in xenobiotic metabolism. A study by Lindblom et al 

(2001) found C. elegans nhr-8 deletion mutants had increased sensitivity to 

cholchicine and chloroquine, and this result was confirmed by nhr-8 RNA-

mediated interference. The same study used GFP reporter constructs to 

demonstrate nhr-8 is exclusively expressed in the intestine, which is comparable 

to the human liver as the main organ of detoxification in nematodes (McGhee 

2007). Human PXR and CAR are primarily expressed in the liver and intestine 

(Amacher 2010, Waxman 1999). 

1.6.6 Factors affecting CYP activity 

Genetic polymorphism is one of the most important factors in the variability of 

CYP expression; alleles causing quantitative increases or decreases in enzyme 

expression have been identified for many human CYPs, in addition to alleles 

resulting in increased or decreased activity. CYP polymorphism is common and 

can result in ‘pharmacogenetic heterogeneity’ between individuals, ranging from 
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poor metabolism phenotypes, with low enzyme activity towards a drug, to ultra-

rapid metabolism phenotypes, with high activity towards a drug. The latter is 

the most widespread and most clinically important phenotype as it can result in 

drug failure or, in the case of pro-drugs, active drug excess or the formation of 

toxic metabolites (Guengerich 2006, Ingelman-Sundberg et al 2007).  

In humans, the genetic basis for the polymorphism is usually copy number 

variation (CNV) due to one or more gene duplications, but single nucleotide 

polymorphisms (SNPs) and insertions and deletions (indels) have also been 

identified (Anzenbacher and Anzenbacherova 2001, Ingelman-Sundberg and Sim 

2010, Nebert and Russell 2002). So far, 360 human CYP alleles have been 

identified and all but one of the CYPs expressed in the human liver are 

associated with genetic polymorphisms. Genetic biomarkers of CYP activity have 

been recognised as predictors of the outcome of drug treatment for a number of 

clinically important human drugs. Tamoxifen, an anti-oestrogen drug used in the 

treatment of breast cancer, requires activation by CYP2D6 and the presence of 

one or two null alleles results in reduced tamoxifen metabolism and a poorer 

therapeutic outcome (Higgins and Stearns 2010). Although tamoxifen is currently 

the only viable treatment option for younger women, for older women, genetic 

screening to determine CYP2D6 genotype may be useful in choosing the most 

effective chemotherapy regime. 

Other innate factors affecting CYP activity in humans include age, gender and 

race in addition to environmental factors such as diet and lifestyle. For example, 

the activity of the drug-metabolising enzyme CYP1A2 can be increased by 

smoking, by the consumption of cruciferous vegetables and a diet high in protein 

but low in carbohydrates and decreased by the consumption of grapefruit juice 

and a diet low in protein and high in carbohydrates (Glue and Clement 1999). 

1.6.7 Induction and inhibition of CYPs by xenobioti cs 

In humans, xenobiotics (including clinical drugs) act as ligands for AhR, PXR and 

CAR and activation of these NRs results in a cascade of gene up-regulation 

involving members of the CYP1, CYP2 and CYP3 families as well as phase II 

metabolising enzymes and phase III drug transporters (Amacher 2010). This can 

lead to drug tolerance due to repeated administration of a CYP-inducing drug 
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resulting in its own accelerated metabolism. CYP induction is also an important 

consideration for multi-drug prescriptions, as concurrent treatment with 

substrates for the same CYPs can result in drug failure due to increased 

clearance, drug excess in the case of a pro-drug, or toxicity due to the increased 

generation of reactive intermediates. Conversely, some widely used clinical 

drugs, such as the anti-histamine cimetidine and the anti-fungal ketoconazole, 

inhibit CYP activity and this response again influences the efficacy and safety of 

concurrent drug therapy. 

In nematodes, CYP activity can also be induced or inhibited by xenobiotic 

exposure. In H. contortus, CYP activity was assessed by measuring microsomal 

activity towards the CYP substrates aldrin and ethoxycoumarin and was shown to 

increase up to 60-fold in response to exposure to phenobarbital (PB), a known 

inducer of multiple CYPs in humans (Kotze 1997). This is a similar magnitude to 

that observed in rats, where western blot analysis identified PB-induced 

increases in liver microsomal CYP proteins of up to 50-100-fold, which 

corresponded to an increase of mRNA levels of 20-50-fold (Waxman and Azaroff 

1992). PB exposure has also been shown to up-regulate CYP mRNA levels in C. 

elegans, albeit at a lower magnitude, with expression of cyp31a1 and cyp31a3 

shown to increase by around 2-fold using semi-quantitative RT-PCR (Menzel et al 

2001).  

Chakrapani et al (2008) used transgenic C. elegans expressing GFP under the 

control of the promotor elements of five CYPs, each of which was predicted to 

be the orthologue of a xenobiotic-inducible human CYP, to measure their 

expression after exposure to 17 xenobiotics. All five C. elegans CYPs were 

induced by 15 or more of the xenobiotics and showed similar expression profiles 

to their human orthologues. However, perhaps unsurprisingly, there are clear 

limitations for homology-based comparisons of CYPs in humans and nematodes. 

Menzel et al (2001) observed that almost all members of the CYP35 family were 

strongly inducible by a range of xenobiotics in C. elegans. A follow-up study 

demonstrated that cyp35a1, cyp35a2, cyp35a5 and cyp35c1 were induced by the 

xenobiotics atrazine, fluoranthene and lansoprasol in a concentration-dependant 

manner (Menzel et al 2005). The CYP35 genes showed most homology to human 

CYP2 family members. However, atrazine, fluoranthene and lansoprasol are 

more strongly linked to CYP1A induction in man. Further, the orthologue of the 
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NR known to activate CYP1A expression in humans, AhR, has been identified in 

C. elegans (ahr-1) and yet ahr-1 null mutants still showed a strong induction on 

exposure to these compounds. These findings, combined with those of Section 

1.6.4, suggest that the rapid evolution of the CYP family, especially affecting 

CYPs involved in xenobiotic metabolism, may prohibit inferences of shared 

function between species based solely on sequence homology.  

Concurrent with this, piperonyl butoxide is a potent CYP inhibitor in most 

species, but it induces expression of two genes, cyp6a1 and cyp6b2, in insects 

(Feyereisen 2005). In H. contortus L3, CYP activity was suppressed in a 

concentration-dependant manner with exposure to piperonyl butoxide (Kotze 

1997) and in a later study, piperonyl butoxide was shown to have a synergistic 

action on the toxic effects of rotenone, an insecticide metabolised by CYPs, in 

H. contortus and T. colubriformis (Kotze et al 2006). Drug toxicity was assessed 

with a larval development assay and an adult motility assay, and the greatest 

piperonyl butoxide and rotenone synergy was observed in the larval stages of 

both species. 

1.6.8 CYPs and insecticide resistance 

The association of insect CYPs with insecticide metabolism and resistance is well 

established. CYP-mediated resistance has been reported in most classes of 

insecticide and in most species of pest insect (Berge et al 1998). Perhaps the 

most well-known example is the expression of a single gene, cyp6g1, which 

confers multi-drug resistance in 20 field strains of D. melanogaster (Daborn et al 

2002). The mechanism responsible for the overexpression of this gene was 

identified as an Accord transposable element insertion in the 5’ flanking 

sequence. In D. simulans, the insertion of a Doc transposable element in the 5’ 

end flanking sequence of cyp6g1 has also been shown to confer insecticide 

resistance (Schlenke and Begun 2004). Eight additional CYPs, cyp4e2, cyp6a2, 

cyp6a8, cyp6a9, cyp6g2, cyp6w1, cyp12a4 and cyp12d1/2, have since been 

shown to confer insecticide resistance in D. melanogaster through either 

overexpression from mutations in the promoter regions or, in the case of cyp6a2, 

point mutations affecting enzyme activity in a manner that is yet to be 

elucidated (Amichot et al 2004, Bogwitz et al 2005, Daborn et al 2007, Maitra et 
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al 1996, Pedra et al 2004). CYP overexpression has also been identified as a 

mechanism of insecticide resistance in pyrethroid-resistant field populations of 

the important malaria vectors Anopheles funestus (cyp6p9) and A. gambiae 

(cyp6z1) (Amenya et al 2008, Nikou et al 2003). 

1.6.9 CYPs and anthelmintic resistance 

Anthelmintic drugs can be detoxified by CYPs. In mammals, ABZ is metabolised 

by a two-step oxidation reaction: CYP3A and FMO oxidise ABZ to the active 

sulphoxide metabolite (ABZSO) before CYP1A oxidises ABZSO to the inactive 

sulphone metabolite (ABSOO) (reviewed in Capece et al 2009). In the mouflon, a 

relative of domestic sheep, repeated ABZ administration has been shown to 

cause auto-induction of CYP1A resulting in an increased rate of anthelmintic 

deactivation (Velίk et al 2005). 

In nematodes, much less is known about ABZ metabolism. In C. elegans, ABZ has 

been shown to induce the expression of cyp35a2, cyp35a5 and cyp35c1 using a 

microarray approach confirmed by real-time PCR (Laing et al, 2010). The same 

project also identified ABZ-glucoside metabolites in whole worm homogenates 

incubated with ABZ using high performance liquid chromatography and mass 

spectrometry (HP-LC-MS). This concurs with the work of Cvilink et al (2008b), 

who used a similar approach to demonstrate that H. contortus metabolises ABZ 

to ABZSO and ABZ-glucoside and the related BZ, flubendazole (FLU), to reduced 

FLU and glucosides of both FLU and reduced FLU. These findings demonstrate 

that nematodes use both phase I (oxidation and reduction) and phase II 

(glucosidation) enzymes to metabolise BZ anthelmintics.  

In the case of the MLs, again, knowledge of nematode anthelmintic metabolism 

lags far behind that of vertebrates. In humans, IVM is metabolised to at least ten 

metabolites and CYP3A4 is the major enzyme involved (Zeng et al 1998). Work 

by Alvinerie et al (2001) implicated CYPs in the metabolism of moxidectin (MXD) 

in H. contortus because the production of the single undefined metabolite 

identified with HP-LC was blocked by carbon monoxide, a known CYP inhibitor. 

Conversely, recent work with C. elegans, suggests that IVM is not metabolised by 

the nematode; in contrast to the HP-LC-MS analysis of whole worm incubations 
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with ABZ described above, no metabolites were detected for incubations with 

IVM (pers. com. Dr S Laing). 

Despite the well-known importance of CYPs in xenobiotic resistance in insects, 

there appears to be little research regarding the putative role of CYP-mediated 

anthelmintic resistance in parasites. Drug resistant isolates of the liver fluke 

Fasciola hepatica have been shown to have a greater capacity to metabolise the 

BZ triclabendazole (TBZ), which is the main anthelmintic used to treat fluke 

infection (Alvarez et al 2005, Robinson et al 2004). TBZ is metabolised to the 

active TBZSO and inactive TBZSOO by phase I enzymes (FMO and CYPs) and phase 

II enzymes (GSTs) then excreted by phase III transporters (PGPs). Inhibition of 

the FMOs, CYPs and PGPs have been shown to reduce TBZ resistance, varying 

from a modest reduction in resistance with CYP inhibition to complete reversal 

to susceptibility with PGP inhibition (reviewed in Brennan et al 2007). Although 

work by Alvarez et al (2005) found no difference in the degree of inhibition of 

TBZ sulphoxidation with piperonyl butoxide between resistant and susceptible 

flukes, suggesting there was no difference in CYP activity between the isolates, 

a recent study by Devine et al (2010) investigating morphological changes in the 

fluke with TBZ treatment found piperonyl butoxide potentiated the effect of TBZ 

in resistant flukes to a greater extent than in susceptible flukes. This suggests 

that increased CYP activity may play a role in the resistance of flukes to 

anthelmintic treatment. Kotze (2000) compared CYP activity in ML-susceptible 

and –resistant H. contortus, but failed to detect any difference between the 

isolates. It is possible, however, that CYPs with low or no activity towards the 

substrates used in the study, aldrin and ethoxycoumarin, are more active in the 

resistant isolate.  
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1.7 Aims of this project 

1. To identify all CYP sequences present in the WTSI H. contortus genome 

databases and assemble the CYP family in H. contortus for phylogenetic 

analysis with CYPs in other species 

2. To develop a real-time PCR screen to measure constitutive CYP gene 

expression and to measure CYP gene induction in response to xenobiotic 

exposure 

3. To use Illumina technology to sequence the H. contortus transcriptome to 

measure CYP gene expression and facilitate global analysis of gene 

expression 

4. To use transcriptome data to investigate conservation between H. 

contortus and C. elegans at a gene and genome level and assess the 

impact of findings on the future completion of the H. contortus genome, 

an essential requirement for the definitive characterisation of the CYP 

family in the parasite
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2 Materials and Methods 

2.1 Standard reagents 

Ethidium bromide: 10 mg/ml in sterile distilled water. Stored at room 

temperature. 

Loading buffer (5X): 100 mM EDTA pH 7.5, 22% Ficoll (Sigma, F2637), 0.05% 

Bromophenol blue (Sigma, B0126). Stored at room temperature. 

M9 buffer: 22 mM KH2PO4, 50 mM Na2HPO4, 85 mM NaCl, 1 mM MgSO4. Stored at 

room temperature. 

Saline for parasite work: 0.85% w/v NaCl in tap water. Stored at room 

temperature. 

TAE (50X): 2 M Tris-base, 100 ml/L 0.5 M EDTA, 57.1 ml/L glacial acetic acid. 

Autoclaved and stored at room temperature. 

TBE (5X): 0.45 M Tris-base, 0.45 M Boric acid, 100 ml/L 0.5 M EDTA. Autoclaved 

and stored at room temperature. 

TE buffer: 10 mM Tris, 1 mM EDTA pH 8. Stored at room temperature.  

2.2 Parasite 

2.2.1 H. contortus maintenance and culturing 

Experimental infections were performed at the Moredun Research Institute using 

orally administered infections of 5000 L3 into 4- to 9-month-old lambs that had 

been reared and maintained indoors under conditions designed to minimise the 

risk of infection with gastrointestinal nematodes. 
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2.2.1.1 Culture of L3 

Faeces from an infected donor lamb were incubated in culture trays at 22oC for 

7 days. Trays were flooded with tap water at 22oC, left to soak for 1 hour (to let 

the larvae migrate out of the faeces), and the contents were sieved through a 1 

mm nylon mesh. The filtrate was sedimented at 4oC for 2 hours then cleaned 

with a Baermann filter as described in Jackson and Hoste (2010). L3 were stored 

in tap water in cell culture flasks with vented lids at 4-8oC for up to 3 months. 

2.2.1.2 Exsheathing L3 

The number of L3 in a suspension was roughly quantified by counting the number 

of larvae in a 10 µl aliquot under a microscope. ~ 0.5 million L3 were removed to 

a 50 ml falcon tube per treatment group. The L3 were stimulated to exsheath by 

the addition of 10 µl sodium hypochlorite (Sigma Aldrich, 425044) per 1 ml L3 

suspension. A small aliquot of the solution was examined under a microscope 

after 10 minutes incubation to monitor exsheathment. The addition of sodium 

hypochlorite was repeated every 10 minutes until exsheathment was confirmed. 

The L3 suspension was centrifuged at 3000 rpm (955 g) at room temperature for 

1 minute. The supernatant was removed and the L3 were washed three times 

with M9 buffer and centrifugation then either resuspended in 30 ml M9 buffer for 

immediate use in liquid culture experiments or snap-frozen in liquid nitrogen for 

storage at -80oC. 

2.2.1.3 Harvest of adult H. contortus 

The donor abomasum was removed at post-mortem and split longitudinally. 

Luminal contents were emptied into a bucket containing 5 L saline at 37oC and 

the mucosal surface was rinsed with a further 1 L saline. Any remaining clumps 

of adult worms were harvested from the mucosa with tweezers into falcon tubes 

containing saline at 37oC. Adult worms in the luminal contents were harvested 

using an agar/mesh floatation technique described in Jackson and Hoste (2010). 

Briefly, 9 g agar (Sigma Aldrich Ltd., 7002) was dissolved in 500 ml saline (0.85% 

w/v NaCl) at 59oC and mixed with 500 ml luminal contents. The resulting 

solution was poured over a 1mm nylon mesh stretched over a makeshift 

springform tray, created from the upturned top of a plastic bucket with a clip-on 



Chapter 2: Materials and Methods  31 

lid, and left to set for 15 minutes. The agar slab was submerged in 5 L saline at 

37oC in a 10 L funnel with a tap at the base. Worms migrate out of the agar into 

the warm saline (upwards or downwards) and can be collected after ~1 hour. 

Worms were rinsed twice in RPMI 1640 solution (Gibco, 21875-034) at 37oC and 

once in RPMI 1640 solution with 1% Penicillin-Streptomycin (Invitrogen, 15140-

122) at 37oC. Worms were either resuspended in RPMI 1640 solution with 1% 

Penicillin-Streptomycin at 37oC for immediate use in liquid culture experiments 

or divided between 2 ml cryotubes, snap-frozen in liquid nitrogen and stored at -

80oC. 

2.2.2 Sexing adult H. contortus 

Adult worms were placed in a 100 mm x 20 mm Petri dish containing RPMI 1640 

solution with 1% Penicillin-Streptomycin at 37oC. The Petri dish was placed on a 

light box to aid viewing and maintain temperature. Adult males and females 

were separated based on the identification of the distinct male copulatory bursa 

and the white female ovaries wrapped around the blood-filled intestine. There 

was also a clear size difference between the smaller males and large females. 

2.2.3 Xenobiotic exposure experiments 

2.2.3.1 L3 liquid culture 

Two batches of ~0.5 million exsheathed L3 in 30 ml M9 buffer (see above) were 

mixed and divided into six 75 ml cell culture flasks with vented caps to allow 

experiments to be performed in triplicate. Stock solutions of xenobiotic were 

added to the three flasks in the ‘treatment’ group and, where DMSO was used as 

a solvent, the corresponding volume of DMSO was added to the L3 suspensions in 

the three control flasks. The liquid cultures were maintained in a shaking 

incubator at 37oC and at 50 rpm for 4-24 hours depending on the xenobiotic and 

guided by published studies in C. elegans and H. contortus (see Chapter 3, 

Section 3.2.4). L3 suspensions were transferred to separate 50 ml falcon tubes 

and rinsed three times with M9 buffer and centrifugation at 3000 rpm (955 g), 

before being divided into appropriately labelled 2 ml cryotubes and snap-frozen 

with liquid nitrogen. Frozen L3 were stored at -80oC. 
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2.2.3.2 Adult liquid culture 

Adult worms were divided between six 100 mm x 20 mm Petri dishes per 

experiment (the exact number of worms depended on the yield from the donor, 

but usually there was enough for at least 20 adult worms per dish) each 

containing 30 ml RPMI 1640 solution with 1% Penicillin-Streptomycin at 37oC. 

Stock solutions of xenobiotic were added to the three dishes in the ‘treatment’ 

group and, where DMSO was used as a solvent, the corresponding volume of 

DMSO was added to the three control Petri dishes. The liquid cultures were 

maintained in a 5% CO2 incubator at 37oC for 5 hours (time was limited by the 

viability of adult worms outside their host) and gently stirred or swirled every 

hour. Worms from each Petri dish were transferred to separate 50ml falcon 

tubes and rinsed three times with RPMI 1640 at 37oC. Centrifugation was 

unnecessary as the adult worms rapidly sank to the bottom of the tubes. The 

worms were divided into appropriately labelled 2 ml cryotubes, snap-frozen with 

liquid nitrogen and stored at -80oC. 

2.3 Template preparation 

2.3.1 DNA lysates for microsatellite analysis 

Microsatellite analysis was used to confirm the worms infecting each donor were 

of the expected isolate using a technique described in Redman (2008b). This is 

based on each strain showing different frequencies of particular alleles for a 

number of microsatellites (Redman 2008, unpublished data). Briefly, a pellet of 

~100 L3 was reserved from every donor sheep. This pellet was added to 50 µl 

DNA lysis buffer (50 mM KCl, 10 mM Tris (pH 8.3), 2.5 mM MgCl2, 0.45% Nonidet 

P-40, 0.45% Tween 20, 0.01% (w/v) gelatine and proteinase K at 200 µg/ml). The 

lysate was kept at -80oC for 10 minutes before incubation at 60oC for 98 minutes 

followed by 20 minutes at 94oC to denature the proteinase K. Negative control 

lysates (without L3) were prepared simultaneously. Lysates were stored at -80oC. 

Dr L. Redman and Miss F. Whitelaw used 1 µl of a 1:50 dilution of lysate as 

template for PCR amplification of microsatellites to confirm the identity of the 

isolate. 
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2.3.2 RNA extraction 

RNA was extracted using a standard Trizol procedure. Briefly, a 200 µl H. 

contortus pellet was frozen in liquid nitrogen then ground thoroughly in a mini 

glass homogeniser (Camlab, 1165622) with 1600 µl of Trizol reagent (Invitrogen, 

15596-026). The sample was then vortexed and left at room temperature for 30 

minutes. Insoluble debris was removed by centrifuging at 14000 rpm (20800 g) at 

4oC for 10 minutes. The supernatant was removed to a fresh tube and 320 µl of 

chloroform added. The mixture was vortexed for 15 seconds and left at room 

temperature for 2-3 minutes. Following centrifuging at 14000 rpm (20800 g) at 

4oC for 15 minutes, the aqueous layer was removed and 500 µl isopropanol 

added. The RNA was precipitated at -80oC for 1 hour. The RNA was pelleted by 

centrifuging at 14000 rpm (20800 g) at 4oC for 10 minutes. The RNA pellet was 

washed in 75% ethanol in DEPC-treated water, vortexed briefly and centrifuged 

at 7500 rpm (5974 g) at 4oC for 5 minutes. The supernatant was removed and the 

RNA pellet was air-dried for 10 minutes. The RNA pellet was then dissolved in 

RNase-free water and treated with DNase I (Qiagen, 79254) in solution for 10 

minutes before purification and concentration using RNeasy columns (Qiagen, 

74104) including the optional on-column DNase I treatment steps in the RNeasy 

protocol. 

RNA samples were quantified by 260/280 absorption on a Gene Quant Pro 

spectrophotometer (Amersham Biosciences) and were analysed by gel 

electrophoresis (1.2% agarose, TBE gel, 100V, 1hr). 

2.3.3 First strand cDNA Synthesis 

First-strand cDNA was synthesized from 5 µg total RNA using random hexamer 

primers, following the manufacturer’s protocol (Cloned AMV First-strand cDNA 

Synthesis Kit, Invitrogen, 12328-040). For each synthesis reaction, a concurrent 

no reverse transcriptase control was run, using 1 µl DEPC-treated water in place 

of 1 µl cloned AMV RT. Residual primers, nucleotides and enzymes were removed 

from the cDNA with a PCR purification kit (QIAquick PCR Purification Kit, 

QIAGEN, 28106) following the manufacturer’s protocol. 
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2.4 PCR 

PCR reactions were performed using a GeneAmp PCR system 9700 (Applied 

Biosystems) in a 20 µl volume. Routine PCR conditions were 95oC for 30 seconds, 

primer annealing at 58-60oC for 30 seconds and extension at 72oC for 1-2 minutes 

per 1Kb of target sequence. A total of 35-40 cycles were used. Final 

concentrations of 250-500 nM of forward and reverse primers and 250 µM of each 

dNTP were used. Oligonucleotide primers were purchased from Eurofins MWG 

Operon. The sequences of all primers used are presented in the Appendices. 

Amplitaq DNA polymerase (5 U/µl, Applied Biosystems, N808-0160) was used at a 

final concentration of 1 unit of enzyme per reaction. 

2.5 Agarose gel electrophoresis 

Nucleic acids were separated on 1-2% (w/v) agarose gels. Agarose (Invitrogen, 

15510-027) was melted in 1XTAE, or 1XTBE for RNA separation, by heating until 

in solution. Ethidium bromide was then added to a final concentration of 0.1 

µg/ml and gels cast. Gels were electrophoresed in 1XTAE or 1XTBE as 

appropriate using equipment from Amersham Pharmacia Biotech. Gels were 

imaged using a Flurochem 5500 UV transilluminator and image capture system 

(Alpha Inotech). 

2.6 Real-time PCR screen 

For experimental design, see Chapter 3, Section 3.2.2. 

2.6.1 Normalising and control genes 

A panel of control genes was developed based on genes used for real-time 

normalisation in C. elegans and constitutively expressed H. contortus genes 

described in the literature. 

C. elegans ama-1 encodes the large subunit of RNA polymerase II. It is 

ubiquitously expressed and has been extensively used as a normalising gene in C. 

elegans RT-PCR experiments. The H. contortus homologue of this gene, Hc-ama, 
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was identified bioinformatically and annotated (see Chapter 3, Section 3.2.2, 

Figures 3-4 and 3-5). Primers were designed to amplify the predicted mRNA. 

act-1 encodes a highly expressed and highly conserved actin isoform, commonly 

used as a normalising gene in RT-PCR experiments in C. elegans. An H. contortus 

homologue of this gene, hc-act, was identified bioinformatically, annotated, and 

primers were designed to amplify the predicted mRNA. 

gtp-ch-1 encodes a GTP cyclohydrolase 1 precursor, which is highly expressed in 

T. circumcincta L3 larvae (Nisbet et al 2008). In an H. contortus comparative 

stage EST sequencing project it was detected in L3 databases only (Hoekstra et 

al 2000). Primers were designed against the published cDNA sequence (Accession 

no. AW670739). 

H. contortus Hc27 is a homologue of the C. elegans vit-6 gene, which encodes a 

vitellogenin, a precursor glycoprotein of egg yolk protein, expressed highly in 

the intestine of adult hermaphrodites. In H. contortus, it was shown by 

northern-blot analysis of PCR products to be expressed in adults only (see Figure 

2-1) and by in situ hybridisation to be expressed abundantly in the intestine 

(Hartman et al, 2001). Primers were designed against the published mRNA 

sequence (Accession no. AF305957). 

 

Figure 2.1: Northern blot of Hc27 PCR products demonstrating high adult-only expression in 
H. contortus. From Hartman et al (2001). 
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2.6.2 Primer design 

Primers were designed with predicted melting temperatures of 60+/-2oC, lengths 

of 18-20 nt, and GC contents of >45%. Where possible, amplicons of 160-200 bp 

(range 120-212 bp) were designed to span introns (see Appendix for primer 

sequences). Primer pairs were tested with PCR amplification of adult and L3 first 

strand cDNA. A single band of the expected size when run on an agarose gel was 

taken as a positive result. This was confirmed with melting curve analysis by the 

real-time PCR machine in each real-time experiment. 

2.6.3 RT-QPCR reaction parameters 

The screen was run on two 96-well plates. On both plates, the first 12 wells for 

each template were reserved for the panel of control genes (Hc-ama in 

triplicate), no reverse transcriptase and no template controls. 

All reactions were carried out using Brilliant SYBR Green QPCR master mix 

(Stratagene, 600548). Experiments were carried out in a separate room from the 

RNA, mRNA and cDNA preparation and in a UV chamber to reduce the risk of 

contaminating nucleic acid. Samples were prepared on ice and the Brilliant SYBR 

Green QPCR master mix was protected from light at all times. The final 

concentration of primers was between 300 and 400 nM in a total reaction volume 

of 25 µl. A Stratagene Mx3000P QPCR system was used with the following 

parameters: 7 minutes and 30 seconds at 95oC, 40 cycles of 30 seconds at 95oC, 

30 seconds at 60oC and 30 seconds at 72oC, and finally 1 minute at 95oC, 

followed by 30 seconds at 55oC and a gradient to 95oC. Fluorescence was 

measured at the end of the elongation phase (72oC) during each cycle for 

quantitation, and continuously during the final gradient from 55-95oC to assess 

dissociation curves. Data were captured and analysed using Stratagene MxPro 

software. 

2.6.4 Analysis 

The relative quantity of each gene on interest (GOI) within each biological 

replicate was calculated using the ∆∆CT method: 
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Relative quantity = 2-∆CT GOI / 2-∆CT Hc-ama 

Where,  

∆CT = difference in threshold cycles between samples (unknown – control) 

2.7 Illumina transcriptome analysis 

2.7.1 RNA and cDNA preparation 

Total RNA was isolated from the frozen pellet of 500 µl exsheathed L3 or mixed 

sex adult worms using the standard Trizol protocol described above. The quality 

and quantity of the total RNA yield was assessed with a Bioanalyzer 2100 

(Agilent). 

mRNA was isolated from 50 µg total RNA using an oligo(dT) magnetic bead 

protocol, which separates mRNA based on the poly(A)+ tail (FastTrack MAG 

mRNA Isolation Kit, Invitrogen, K1580-01). The mRNA was eluted in 35 µl RNase-

free water and quantified with a NanoDrop 3300 Fluorospectrometer (Thermo 

Scientific). 

Next, mRNA (0.5-1 µg) was fragmented with RNA Fragmentation Reagents 

(Ambion, AM8740); 31.5 µl mRNA was heated at 70oC with 3.5 µl 10X 

Fragmentation Buffer for 5 minutes, before adding 3.5 µl Stop Buffer. The 

fragmented mRNA was precipitated with 3.5 µl NaOAC pH 5.2, 2 µl glycogen and 

100 µl 100% ethanol and incubated at -80oC for 30 minutes. The tube was 

centrifuged at 14000 rpm (20800 g) at room temperature for 15 minutes. The 

supernatant was removed and the pellet was washed with 1 ml 70% ethanol in 

DEPC-treated water, vortexed and centrifuged at 14000 rpm (20800 g) at room 

temperature for 10 minutes. The supernatant was removed and the pellet was 

air-dried for up to 30 minutes then re-suspended in 10.5 µl RNase-free water. 

First-strand and second-strand cDNA were synthesized according to the 

manufacturer’s protocol (Superscript Double-stranded cDNA Synthesis Kit, 
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Invitrogen) but with 3 µg/ul random hexamer primers (Invitrogen). The cDNA was 

cleaned using a QIAquick PCR Purification Kit (Qiagen). 

2.7.2 Sequencing and analysis 

The fragmented double-stranded cDNA was submitted to the Illumina Sequencing 

Team at The Sanger Institute for library preparation. Briefly, Illumina adapters 

were ligated to the cDNA fragments (after end repair and addition of a single A 

base). The fragments were gel purified with size selection at 200 bp (+/- 25 bp) 

then PCR amplified using Illumina primers designed against the adapter 

sequences. The cDNA fragments were sequenced on a Genome Analyser 

(Illumina).  

Initially, 52 bp length reads were generated and mapped using the algorithms 

‘Mapping and Assembly with Qualities’ (MAQ) and ‘Sequence Search and 

Alignment by Hashing Algorithm’ (SSAHA) (Li et al 2008, Ning et al 2001, 

Rutherford et al 2000). Later, with improvements in both sequencing technology 

and downstream analysis, 76 bp length reads were generated and mapped with 

‘Burrows-Wheeler Aligner’ (BWA) algorithms and processed as SAM and BAM files 

(Carver et al 2010, Li and Durbin 2009). 

The alignment of reads to genomic sequence with MAQ, SSAHA and BWA was 

performed by Martin Hunt at the Wellcome Trust Sanger Institute, Cambridge. 

2.7.2.1 Generating coverage plots from mapped refer ence files 

BAM files generated from mapping with BWA algorithms were re-formatted to 

contain 60 characters per line to make them compatible with SAMtools 

(http://samtools.sourceforge.net/). SAMtools was used to index the re-

formatted BAM files and extract transcriptome read data for each supercontig or 

BAC insert sequence of interest to create individual pile-up files. These files 

were opened and viewed as coverage plots for each reference sequence in 

Artemis. 
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BAM files were also directly opened in Artemis after being sorted and indexed 

with SAMtools. This permitted visualisation of individual reads aligned to the 

reference sequence and mate pair reads could be identified. 

2.7.2.2 Extracting read data for comparison of gene  expression 

SAMtools was used to extract and count all reads aligning to specified regions of 

a supercontig. This permitted comparison of the level of CYP gene expression 

between samples: reads aligned to annotated CYP genes were extracted and 

normalised to the number of reads aligned to the control gene Hc-ama.  

2.7.2.3 Mapping reads containing spliced leader (SL ) sequences 

All reads containing published H. contortus SL1 or SL2 sequences (accession 

number Z69630 and AF215836) were extracted and the SL sequence was 

removed. There is a family of SL2 sequences in C. elegans, and the same may be 

true in H. contortus, so a single base pair mismatch from the published sequence 

was tolerated. The trimmed reads were aligned to the reference BAC insert 

sequences with BWA as two separate groups (depending on the SL sequence). 

The SL1 and SL2 BAM files were sorted and indexed with SAMtools and opened 

directly in Artemis to view the trimmed reads aligned to the annotated BAC 

insert sequences. This allowed the identification of genes trans-spliced to SL1 

and SL2. 

2.8 Bioinformatic identification of CYP sequence 

Polypeptide sequences for all C. elegans CYPs listed in Wormbase were used to 

perform a tBLASTn (protein into translated DNA) search of the 93 Mb H. 

contortus assembled contigs 27/01/06 database. This search was repeated with 

CYPs of interest from other species: human CYP3A4 and Drosophila melanogaster 

CYP6G1 polypeptides. All contigs identified with P<0.005 were used for a BLASTx 

(translated DNA into protein) reciprocal search of the C. elegans Wormpep 

database to ensure the best hits were indeed CYPs. The closest matched protein 

for each was recorded. 
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This procedure was repeated for the revised 214 Mb H. contortus assembled 

contigs 12/11/07 database and 279 Mb H. contortus assembled contigs and 

supercontigs 21/08/08 databases as they became available. In addition, each H. 

contortus CYP sequence identified with a previous search was used for a BLASTn 

(DNA into DNA) search of each new database for completeness and to maintain 

continuity with the nomenclature. 

2.9 Bioinformatics software 

DNA sequence was viewed and annotated using both Vector NTI (Invitrogen) and 

Artemis (Sanger) software. The latter is free and available online 

(http://www.sanger.ac.uk/resources/software/artemis/).  

Basic Local Alignment Search Tool (BLAST), provided by the National Centre for 

Biotechnology Information (NCBI) was used to search nucleotide and protein 

sequence databases. It was possible to BLAST search C. elegans sequence 

databases from within Wormbase (www.wormbase.org) and H. contortus 

sequence databases from within the H. contortus Sequencing Project website 

(www.sanger.ac.uk/Projects/H_contortus).  

SAMtools was used to handle and process files of transcriptome reads aligned to 

reference sequence. This software is hosted by SourceForge and is available for 

free download (http://sourceforge.net/projects/samtools/files/). 
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3  Cytochrome P450 gene expression 

3.1 Introduction 

Cytochrome P450s (CYPs) are a large superfamily of enzymes found in almost all 

living organisms (Nelson et al 1993). Their ubiquity reflects both their ancient 

origin and their physiological importance. CYPs catalyse a wide range of 

reactions involving both endogenous and exogenous substrates. They are 

involved in the biosynthesis and catabolism of steroids, retinoids, prostaglandins 

and fatty acids and the detoxification of exogenous substrates including drugs 

and insecticides (Anzenbacher and Anzenbacherova 2001, Mansuy 1998, Nebert 

1994, Nebert and Dieter 2000, Nebert and Russell 2002, Nelson et al 1993, 

Thomas 2007).  

The impressive repertoire of substrates metabolised by CYPs is in part due to the 

large size of the family, but also due to the wide substrate diversity of a number 

of individual enzymes. Although a number of CYP proteins are specific for 

individual substrates, especially those acting on endogenous compounds, many 

of those associated with xenobiotic metabolism have a much broader range. This 

is well demonstrated by the five (of 57) human CYPs, which are responsible for 

the metabolism of around 75% of drugs in clinical use (Wienkers and Heath 

2005a,Williams et al 2004) and the one enzyme, CYP3A4, which catalyses more 

than 50% of these reactions (Fujita 2004, Smith and Jones 1992). Incredibly, the 

total number of substrates these five enzymes can collectively metabolise is 

thought to reach into the millions (Guengerich 2009). 

CYPs primarily function as mono-oxygenase enzymes, but this encompasses many 

distinct types of biotransformation; CYPs demonstrate oxidase, reductase, 

dehydrogenase, dehydrase and isomerase activity amongst others. In total, CYPs 

have been shown to catalyse at least 60 chemically distinct reactions (Gillam 

2008, Mansuy 1998).  

The expression of individual CYPs can be increased in response to exposure to 

their substrate. This mechanism is primarily regulated by nuclear receptors, 
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which bind to control elements upstream of the 5’ end of the gene, inducing 

mRNA expression (reviewed in: Savas et al 1999, Xu et al 2005). 

In insects, the association of overexpression of CYP genes with drug resistance is 

well established. In 2001, Daborn et al, found overexpression of a single gene, 

cyp6g1, was responsible for multi-insecticide resistance in 20 field strains of D. 

melanogaster. The mechanism responsible for the overexpression of cyp6g1 was 

identified as an Accord transposable element insertion in the 5’ flanking 

sequence. Work by Schlenke et al (2004) then identified a Doc transposable 

element insertion, also in the 5’ flanking sequence of cyp6g1, capable of 

conferring insecticide resistance in Drosophila simulans. Eight additional CYPs, 

cyp4e2, cyp6a2, cyp6a8, cyp6a9, cyp6g2, cyp6w1, cyp12a4 and cyp12d1/2, have 

since been shown to confer insecticide resistance in D. melanogaster through 

either overexpression from mutations in the promoter regions or, in the case of 

cyp6a2, point mutations affecting enzyme activity in a manner that is yet to be 

elucidated (Amichot et al 2004, Bogwitz et al 2005, Daborn et al 2007, Maitra et 

al 1996, Pedra et al 2004). Despite the wealth of information highlighting the 

importance of CYP-mediated drug metabolism in humans and xenobiotic 

resistance in insects, the CYP family in nematodes has received little attention. 

The genome of the model nematode C. elegans encodes 80 CYPs. The function of 

most are unknown, although a number of CYPs have been shown to be induced 

with exposure to xenobiotics (Menzel et al 2001, Menzel et al 2005). The 

commonly used BZ anthelmintic, albendazole, has recently been shown to be 

metabolised by C. elegans and to induce the expression of cyp35a2, cyp35a5 and 

cyp35c1 (Laing et al 2010). In parasitic nematodes, CYP oxidase activity has been 

demonstrated in microsomal preparations from H. contortus L1 and L3 larvae, 

although only a low level was detected in the adult stage (Kotze 1997). 

However, the CYP inhibitor piperonyl butoxide has been shown to increase the 

toxicity of rotenone to both L3 and adult H. contortus and T. colubriformis, 

suggestive of active CYP-mediated metabolism in both stages (Kotze et al 2006).  

The aim of this project was to identify the family of CYP genes in H. contortus 

and measure their expression levels in different life-stages, sexes, and tissues. 

Of particular interest were their expression levels in anthelmintic-exposed and 

anthelmintic-resistant worms relative to non-anthelmintic-exposed susceptible 
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worms, with a view to elucidating a putative role in xenobiotic metabolism and 

anthelmintic resistance. 

3.2 Results 

3.2.1 Identifying CYP gene sequences in an incomple te genome 

3.2.1.1 Bioinformatics and comparative analysis 

All CYPs are large single domain proteins, which facilitates their discovery using 

homology-based methods. A proven approach to the identification of CYP family 

members in a new genome is to perform multiple Basic Local Alignment Search 

Tool (BLAST) searches, using well-characterised CYP sequences from other 

species, aided where possible by EST sequences (Gotoh 1998, Tijet et al 2001). 

The characterisation of the CYP family in H. contortus was facilitated by the 

availability of genomic, mRNA and amino acid sequence for the complete CYP 

family in C. elegans (www.wormbase.org). The main obstacle for annotating the 

family in the parasite was the lack of a completed genome (see Chapter 1). The 

unfavourable combination of small contigs and large genes complicated the 

identification of full length CYPs in the H. contortus genomic databases 

(www.sanger.ac.uk/Projects/H_contortus). An additional challenge was the high 

level of sequence identity and conservation of exon: intron organisation in CYPs 

of the same subfamily, making it difficult to distinguish contigs encoding regions 

of closely related but different genes from those containing unassembled 

polymorphic sequence from the same gene. The known propensity for CYP 

families to expand by gene duplication, potentially generating clusters of highly 

similar genes and pseudogenes, added to the complexity of confident 

annotation.  

Due to this a ‘tag’ approach was developed; undertaking experimental work 

based on partial sequences (‘tags’) on each small contig, rather than full length 

genes. It was hoped that the predicted 1-3 fold coverage of the genome in the 

reference databases would permit identification of at least one tag for every 

CYP gene in the family. The resulting information would then be directly 

applicable to the full length CYPs identified when the genome is complete. 
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3.2.1.2 Identification of CYP gene tags 

Polypeptide sequences for all C. elegans CYPs in Wormbase were used to 

perform a tBLASTn (protein into translated DNA) search of the 93 Mb H. 

contortus assembled contigs 27/01/06 database. This search was repeated with 

CYPs of interest from other species: human CYP3A4 and Drosophila melanogaster 

CYP6G1 polypeptides. 48 contigs were identified with P<0.005 and these were 

used for a BLASTx (translated DNA into protein) reciprocal search of the C. 

elegans Wormpep database to ensure the best hits were indeed CYPs. The 

closest matched protein for each was recorded. 

This procedure was repeated for the revised 214 Mb H. contortus assembled 

contigs 12/11/07 database and 279 Mb H. contortus assembled contigs and 

supercontigs 21/08/08 databases as they became available. In addition, each H. 

contortus CYP sequence identified with a previous search was used for a BLASTn 

(DNA into DNA) search of each new database for completeness and to maintain 

continuity with the nomenclature.  

In total, 97 partial CYP sequences (‘tags’) were identified on 61 contigs (see 

Figure 3-1). 

3.2.1.3 Annotation of CYP tags 

Each CYP tag was annotated based on BLASTx sequence alignment with the 

closest matched polypeptide in C. elegans. Methionine start codons (where the 

5’ end of a gene was present) and the GT:AG rule for intron boundaries were 

observed. The predicted polypeptide was then used to BLASTp search the NCBI 

protein databases and the closest matched protein was recorded (see Figure 3-

2). 

3.2.1.4 Nomenclature for H. contortus CYP tags 

The standard CYP nomenclature system cannot be applied to the incomplete 

genome of H. contortus as the true amino acid identity between incomplete 

genes cannot be determined. In addition, the nomenclature for H. contortus 

genes based on their putative orthologues in C. elegans adopted by some 
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workers is especially risky for this family due to the likelihood of the rapidly 

evolving family generating a preponderance of paralogues. Further, a single 

amino acid substitution in a 500 residue CYP can dramatically change the 

catalytic activity, highlighting the importance of correct classification for this 

family (reviewed in Nelson et al, 1993). 

Therefore, to avoid incorrect family classification or a misleading assumption of 

orthology, the CYP sequences were simply given the identifier ‘Hc’ for H. 

contortus, ‘cyp’ for cytochrome P450, ‘tag’ for partial sequence and a number 

e.g. Hc-cyp-tag1. CYP tags identified in previous searches retained their original 

designated number in each revised search. 

3.2.2 Development of a PCR assay of CYP gene expres sion 

Although the full sequence for every H. contortus CYP gene was not available, 

the identification of all partial CYP sequences present in the H. contortus 

genomic databases facilitated the design of a preliminary semi-quantitative RT-

PCR screen. This was followed by the development of a real-time RT-PCR screen. 

When the semi-quantitative screen was designed, 76 CYP tags had been 

identified in the 12/11/07 contig database. By the time the real-time RT-PCR 

screen was developed, the 21/08/08 combined worm supercontig database had 

been released, and 97 CYP tags had been identified. By this stage, it was hoped 

that the predicted 1-3 fold coverage in the contig databases would be reflected 

in the presence of at least one tag for every CYP gene encoded in the H. 

contortus genome. 

Initially, attempts were made to assay CYP gene expression semi-quantitatively 

by comparing the optical density of CYP tag RT-PCR products run on ethidium 

bromide agarose gels. At this stage, 76 CYP tags had been identified. Of these, 

51 were both amenable to primer design and yielded amplicons of the expected 

size in either exsheathed L3 or adult cDNA. This preliminary screen was 

successful to a degree, as it was possible to detect large differences in CYP tag 

expression, such as those between L3 and adult stages of the parasite as shown 

in Figure 3.3 (some poorly expressed bands were more visible on screen than are 

reproduced in print). 27 tags were more highly expressed in the L3 stage, four 
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tags were more highly expressed in the adult and the remainder had similar 

expression levels between stages.  

The differences that might be expected in CYP expression levels before and 

after induction with xenobiotics were unknown, but it was hoped that if present, 

they would be sufficiently large to be detected with the screen. However, no 

differences in expression were identified after exposing MHco3 (ISE) L3 larvae 

and adult worms to different xenobiotics at increasingly high concentrations (see 

Section 3.2.2.5). As it was unclear if this inability to detect a difference in CYP 

expression was due to a lack of induction or to the limitations of the semi-

quantitative screen, it was decided that a more sensitive approach of measuring 

gene expression was required, so a real-time PCR screen was developed. 

3.2.2.1 Primer design and reaction specificity 

All primers were designed with predicted melting temperatures of 60+/-2oC, 

lengths of 18-20 nt, and GC contents of >45%. Where possible, amplicons of 160-

200 bp (range 120-212 bp) were designed to span introns (see Appendix for 

primer sequences). 

75 CYP tags were amenable to primer design. The remaining 22 partial CYP 

sequences were either too short or shared 100% nucleotide identity with the 

predicted coding sequence of another CYP tag for which primers had already 

been designed. 

Primer pairs were tested with PCR amplification of adult and L3 first strand 

cDNA synthesised from total RNA after a double (in solution and on column) 

DNase digest to remove genomic contamination. A single band of the expected 

size when run on an ethidium bromide agarose gel was taken as a positive result. 

This was confirmed with melting curve analysis by the real-time PCR machine for 

each real-time experiment. 

57 CYP tags were successfully amplified from the first pair of primers designed 

against their sequence and an additional 11 CYP tags were amplified from a 

second or third pair of primers designed after failure of the first set. Seven CYP 

tags could not be amplified from adult or L3 cDNA. 
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3.2.2.2 Normalisation 

For real-time RT-QPCR, it is recommended that normalising genes have similar 

expression levels to those of the genes of interest. However, most CYPs have a 

very low constitutive expression and the use of a poorly expressed normalising 

gene was deemed more likely to introduce error and reduce the repeatability of 

the screen. For this reason, the H. contortus homologue of C. elegans ama-1, a 

gene encoding a subunit of RNA polymerase II was used (see Figure 3-4 and 

Figure 3-5). This gene has been extensively used as a reference transcript for 

expression analysis in C. elegans (Johnstone and Barry 1996). A panel of three 

control genes, Hc-act, hc27 and gtp-ch-1 (see Materials and Methods), were also 

included in the screen to monitor normalisation as well as acting as positive 

controls for the sample material. 

 

3.2.2.3 Efficiency 

The low expression level of the majority of the CYP tags prevented the use of 

standard curves as a measure of efficiency, as threshold was only reached in the 

most concentrated samples in a serial dilution. For this reason, the comparative 

CT method (assumes efficiency is 100% for both the normalising gene and the 

gene of interest) was used. Standard curves were run for the normalising gene 

Hc-ama to confirm its efficiency was close to 100% (see Figure 3-6). 

In addition, linear regression on the fluorescence during the exponential phase 

of the PCR was used to estimate amplification efficiency (E) of all primer pairs 

using the computer software LinRegPCR (Ramakers et al 2003). For MHco3 (ISE) 

isolate adult cDNA, 59 of the 74 primer pairs had E>0.90, five had E=0.70-0.90 

and ten had E<0.70 (although the latter group included six genes for which adult 

expression was only barely detected). All positive controls had E>0.98. For adults 

of both the MHco4 (WRS) isolate and the MHco10 (CAVR) isolate, only 35 of the 

CYP primer pairs had E>0.90 (23 of which were for the same tags in both 

isolates) confirming the limitations of applying a screen designed for MHco3 (ISE) 

cDNA to other isolates. The efficiencies of the control genes appeared relatively 

robust, with E>0.92 for the full panel of controls in both resistant isolates. 
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For reproducible experiments, run-to-run variability in primer efficiency is 

recommended to be less than 5% so the range of E values calculated for each 

primer pair by LinRegPCR was recorded for three biological replicates of MHco3 

(ISE) isolate adult cDNA. However, only five primer pairs demonstrated a range 

of less than 5%, with significantly greater variability shown by the remainder. 

3.2.2.4 Reproducibility 

The technical reproducibility of the screen was assessed by running two 

replicate experiments using the same cDNA sample (intra-assay variation) and 

two replicate experiments using different batches of cDNA synthesised from the 

same RNA sample (inter-assay variation). H. contortus is known to be a highly 

polymorphic species, so two replicate experiments comparing cDNA from MHco3 

(ISE) worm populations from two different donor sheep were also performed. In 

all experiments, reproducibility was best for the most highly expressed genes, 

with an increase in precision as CT value decreased (see Figure 3-7). Pearson’s 

correlation co-efficient (r2) was 0.956 for intra-assay variation, 0.953 for inter-

assay variation, and 0.951 for MHco3 (ISE) worm populations between donors.  

The screen was spread over two 96-well plates. As shown in graph A (Figure 3-7), 

the CT values for plate 1 and plate 2 replicates of the more highly expressed 

control genes were slightly staggered, suggesting a between-plate effect. 

Therefore, normalised CT values were also assessed, using three replicates of 

the Hc-ama gene per plate. This improved Pearson’s correlation co-efficient for 

all data sets: 0.966 for intra-assay variation, 0.959 for inter-assay variation, and 

0.952 for MHco3 (ISE) worm populations between donors. 

3.2.2.5 Data analysis 

Measurements of multiple genes in parallel are at risk of generating large 

numbers of false positives and statistical analysis must attempt to control this 

bias (Breitling 2006). Microarray studies are an extreme example of this, so the 

most common approaches used to analyse the large volume of data they 

generate were applied to the real-time screen. 
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Most published microarray studies consider a two-fold increase/decrease in 

measured level as potential differential expression, although there is no firm 

theoretical basis for selecting this level as significant (Mocellin and Rossi 2007). 

When this cut-off was applied to the preliminary results from the comparison of 

CYP expression between life stages, which, based on CYP expression data from 

C. elegans, were expected to show differences, 43 tags were identified as more 

highly expressed in one stage than the other. However, the Student’s t-test 

found only 27 of these were significant at P<0.05. 

Bonferroni’s correction reduces the P-value threshold in proportion to the 

number of comparisons made, to correct for the increase in probability of 

identifying false positives inherent in larger scale studies. This simple correction 

was applied to the same adult versus L3 expression data for the student’s t-test 

at P<0.05. However, at this level of stringency, no tags were identified as 

differentially expressed. The adjusted result was thought to be too strict for this 

real-time screen for a number of reasons. Firstly, knowledge of the CYP family in 

other species would suggest that a number of tags would show some differential 

expression, and the identification of a number of candidates using the student’s 

t-test at both P<0.05 and P<0.01 but none after the Bonferroni correction, would 

suggest the adjustment was too severe. Secondly, the focus of this screen was 

on genes most likely to show differential expression rather than a non-

discriminating genome-wide screen, so it could be argued that this would 

increase the probability that a tag identified as differentially expressed would 

be a true result. Thirdly, a number of the tags were expected to represent the 

same gene, which would theoretically decrease k, the number of comparisons in 

the dataset, and thus the proportional reduction in P inferred by Bonferroni’s 

correction. 

Although the results from the student’s t-test at P<0.05 without adjustment 

would equate to a false discovery rate (FDR) of 13.8%, which would be on the 

high side for a strict microarray analysis (normally set between 1-10% (Breitling 

2006)), the aim of the screen was to identify genes with possible higher 

expression for further analysis, so it was deemed best to tolerate an occasional 

false positive to improve the chances of finding such candidates. 
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3.2.3 Constitutive CYP gene expression  in different life stages, 

sexes and tissues 

The constitutive expression of the CYP tags was compared between samples, 

which, based on the CYP family in other species, would be expected to show 

marked differences in expression profiles. The reasons for this were threefold: 

firstly, to test the ability of the screen to detect differences in gene expression, 

secondly, to detect tags with similar expression profiles to help gene assembly 

and thirdly, to learn more about the CYP family in H. contortus. 

Preliminary results had suggested that there were large differences in CYP 

expression between L3 larvae and adults in H. contortus as a stage specific 

constitutive expression had been clearly detected with the semi-quantitative 

screen (see Figure 3-3). 

Therefore, comparisons between adult and two larval stages (L3 and L4), 

between male and female adult worms, and between intestine and soma (worm 

body with intestine removed) were undertaken with the real-time screen. 

3.2.3.1 Real-time PCR screen comparison of CYP gene  expression in L3 

larvae and adult worms 

Constitutive CYP expression in MHco3 (ISE) L3 larvae and 21-day adult worms was 

compared with the real-time screen (see Figure 3-8). Three biological replicates 

(material from different populations of worms from different donor sheep) were 

run. If an L3 or adult sample failed to reach threshold in one biological replicate 

for a particular CYP tag, data from the remaining two biological replicates were 

used (marked *). The expected profiles of adult-expressed hc27 and L3-

expressed gtp-ch-1 genes were observed in the panel of controls (Hartman et al 

2001, Hoekstra et al 2000) although low levels of expression of both hc27 and 

gtp-ch-1 were detected in the L3 and adult stages respectively, but not 

described in the literature. 

The vast majority of CYP tags were more highly expressed in L3s. The exceptions 

were Hc-cyp-tag15, Hc-cyp-tag25, Hc-cyp-tag34, Hc-cyp-tag54 and Hc-cyp-

tag60, which had higher constitutive expression in adult worms, although the 
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differences in Hc-cyp-tag34 and Hc-cyp-tag54 expression were not statistically 

significant at P<0.05.  

Hc-cyp-tag9, Hc-cyp-tag17, Hc-cyp-tag23, Hc-cyp-tag28, Hc-cyp-tag29, Hc-cyp-

tag30, Hc-cyp-tag33, Hc-cyp-tag36, Hc-cyp-tag37, Hc-cyp-tag44, Hc-cyp-tag51, 

Hc-cyp-tag58, Hc-cyp-tag64, Hc-cyp-tag65, Hc-cyp-tag69, Hc-cyp-tag76, Hc-cyp-

tag77, Hc-cyp-tag86, Hc-cyp-tag89, Hc-cyp-tag94 and Hc-cyp-tag95 did not reach 

threshold in one or other stage in more than two experiments, so relative 

expression could not be determined for these genes. Theoretically, nominal 

relative expression levels could be calculated by assigning a value of 40 

(maximum number of cycles) to tags that failed to cross the threshold in all 

three biological replicates for one or other sample. However, this practice was 

not used for the CYP screen because with the high CT values recorded for many 

of the expressed tags, there would be a risk that a tag expressed at a low level 

in one sample and not expressed in the other, but assigned a nominal value of 

40, could appear more highly expressed in the latter due to normalisation. 

However, when absolute expression rather than relative expression of the above 

genes was considered (see Figure 3-10), Hc-cyp-tag29 was shown to be 

constitutively expressed in the L3 stage but not the adult, and Hc-cyp-tag77, Hc-

cyp-tag94 and Hc-cyp-tag95 were constitutively expressed in the adult but not 

the L3 stage. 

3.2.3.2 Illumina (RNA-seq) comparison of CYP gene e xpression in L3 larvae 

and adult worms 

Results of CYP expression analysis from the real-time screen were compared to 

data generated by RNA-seq transcriptome analysis. Illumina technology was used 

to sequence the transcriptome of 21-day adult and L3 stages of the H. contortus 

MHco3 (ISE) isolate. 38 million and 19 million 76 bp reads were generated from 

sequencing runs of adult and L3 cDNA libraries respectively. The reads were 

mapped to reference genomic sequence in the 21/08/08 supercontig database 

(www.sanger.ac.uk/Projects/H_contortus) using Mapping and Assembly with 

Qualities (MAQ) algorithms. 48% of the adult reads and 43% of the L3 reads 

mapped uniquely to sequence in the database. 
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As expected from the findings of the real-time screen, adult expression of the 

majority of CYPs was low. This was reflected in few or no reads mapping to the 

predicted coding regions of most CYP tags. The exceptions were Hc-cyp-tag3, 

Hc-cyp-tag11, Hc-cyp-tag15, Hc-cyp-tag25, Hc-cyp-tag34, Hc-cyp-tag54 and Hc-

cyp-tag60, which had relatively good coverage over all available predicted 

coding sequence. The predicted coding sequence of Hc-cyp-tag25 had the 

highest maximum read depth of 66. 

The coverage of the CYPs mapped with L3 transcriptome reads was significantly 

better than for the adults, although still relatively low compared to many 

neighbouring genes on the contigs studied. Highest coverage was seen for Hc-

cyp-tag23, with a depth of up to 136 reads mapping to the predicted coding 

sequence. 

The number of reads mapping to each real-time PCR primer binding site was 

used to compare relative expression of the CYP tags between adult worms and 

L3 larvae. The number of reads mapping to the CYP tags were normalised for 

each sample with the number of reads mapping to Hc-ama. Encouragingly, the 

results closely matched those of the real-time screen (see Figure 3-8). 

3.2.3.3 Real-time PCR screen comparison of CYP gene  expression in L4 

larvae and adult worms 

A similar overall pattern of constitutive CYP expression in the larval stage was 

seen in three biological replicates of MHco3 (ISE) L4 larvae and 21-day adult 

worms compared with the real-time screen (see Figure 3-9). The L4 expression 

of the L3 (gtp-ch-1) and adult (hc27) positive control genes are not described in 

the literature, but the results of the screen suggested hc27 was expressed more 

highly in the adult than the L4 and no difference was seen in expression of gtp-

ch-1 between the adult and L4, both of which are in-keeping with the known 

adult and L3 stage-specificity of the controls (Hartman et al 2001, Hoekstra et al 

2000). 

In common with the L3 and adult comparison, the large majority of CYP tags 

were more highly expressed in the larval stage with the exceptions of Hc-cyp-

tag15 and Hc-cyp-tag25, which were again more highly expressed in the adult. 
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Unlike in the L3 and adult comparison, Hc-cyp-tag34, Hc-cyp-tag54 and Hc-cyp-

tag60 were not more highly expressed in the adult stage than the L4.  

A lack of constitutive expression of Hc-cyp-tag29 was again noted in the adult 

stage, although in contrast to the L3 stage, there appeared to be no L4 

expression of this tag. No L4 expression was detected for Hc-cyp-tag23, Hc-cyp-

tag28, Hc-cyp-tag33, Hc-cyp-tag36, Hc-cyp-tag44, Hc-cyp-tag58 or Hc-cyp-tag77 

(see Figure 3-10). 

3.2.3.4 Real-time PCR screen of CYP gene expression  in soma and intestine 

of adult worms 

The intestine is thought to be the main organ of detoxification in nematodes and 

a number of genes associated with xenobiotic metabolism such as CYPs, GSTs 

and PGPs show higher expression in the C. elegans intestine (An and Blackwell 

2003, McGhee 2007, Menzel et al 2001). It was therefore of interest to 

investigate the level of CYP expression in the H. contortus intestine. 

 

Constitutive CYP expression in the Beltsville isolate adult soma and intestine 

were compared with the real-time screen using oligo-dT-primed cDNA kindly 

provided by Professor D. Jasmer (see Figure 3-11). Soma consisted of worm 

bodies with the intestines removed, but could not be described as completely 

intestine free due to the nature of the extraction. Only one biological replicate 

was performed due to the limited amount of material available. 

The majority of CYP tags were more highly expressed in the intestine. The 

exceptions were Hc-cyp-tag6, Hc-cyp-tag12, Hc-cyp-tag14, Hc-cyp-tag15, Hc-

cyp-tag25, Hc-cyp-tag40, Hc-cyp-tag56, Hc-cyp-tag70, Hc-cyp-tag73, Hc-cyp-

tag74, Hc-cyp-tag75, Hc-cyp-tag76, Hc-cyp-tag80, Hc-cyp-tag81 and Hc-cyp-

tag95, which were more highly expressed in the soma. 

3.2.3.5 Real-time PCR screen of CYP gene expression  in adult male and 

female worms 

A comparison of CYP expression in H. contortus males and females was of 

interest because a number of CYP genes in C. elegans have sex-specific 
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expression and are required for normal reproductive development and behaviour 

(Benenati et al 2009, Gerisch and Antebi 2004, Kleemann et al 2008), and may 

have functional orthologues in the parasite. 

 
Constitutive CYP expression in adult MHco3 (ISE) male and female worms was 

compared with the real-time screen (see Figure 3-12). Three RNA replicates 

were performed using material isolated from a group of adult males and a group 

of adult females harvested from the same donor sheep. In cases where a single 

well failed to reach threshold, data from the remaining two replicates was used 

(marked *).  

25 CYP tags were more highly expressed in the male sample at P<0.05 and Hc-

nhr and Hc-pgp also appeared to be more highly expressed in males. Hc-cyp-

tag15, Hc-cyp-tag25, Hc-cyp-tag73, Hc-cyp-tag74 and Hc-cyp-tag75 were more 

highly expressed in the female sample, although only the first two were 

statistically significant at P<0.05. Hc-cyp-tag15 and Hc-cyp-tag25 were also more 

highly expressed in the adult than larvae and more highly expressed in the soma 

than the intestine, while Hc-cyp-tag73, Hc-cyp-tag74 and Hc-cyp-tag75 were 

more highly expressed in the L3 than the adult and more highly expressed in the 

intestine than the soma. These tags are discussed further in Chapter 4. 

3.2.4 CYP gene expression in xenobiotic-exposed H. contortus 

CYPs are induced on exposure to their substrate (Xu et al 2005). In C. elegans, a 

number of CYPs have been shown to be induced on exposure to xenobiotics 

(Chakrapani et al 2008, Menzel et al 2001, Menzel et al 2005). It was of interest 

to investigate the induction of H. contortus CYPs on exposure to anthelmintics 

due to their possible role in drug metabolism and resistance. 

Concentrations for in vitro drug exposures of H. contortus L3 larvae and adults 

were chosen based on those used in published studies of xenobiotic responses in 

C. elegans (Chakrapani et al 2008, Menzel et al 2001), H. contortus larvae 

(Boisvenue et al 1983, Kotze 1997), H. contortus adults (Cvilink et al 

2008a,O'Grady and Kotze 2004) and clinically relevant doses. Acute drug 

exposures at very high concentrations over a short time period were also 

performed (see Table 3-1). 
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3.2.4.1 CYP gene expression in IVM-exposed L3 

Initial attempts to detect differences in CYP expression after xenobiotic 

exposure were based on L3 material for three reasons: L3 larvae were more 

readily available and limited the number of donor sheep required for 

experiments; L3 were more amenable to in vitro work as they survived well in 

liquid culture; studies by Kotze (1997) had demonstrated greater oxidase activity 

towards model CYP substrates in H. contortus L3 than in adults and this was 

supported by the results of the real-time PCR screen, which indicated higher CYP 

expression in L3 than adults. 

No CYP induction was identified with the semi-quantitative screen in L3 after 

exposure to an extremely high concentration (5 µg/ml) of IVM in 0.05% DMSO for 

four hours relative to control larvae exposed to 0.05% DMSO only. As it was 

unclear if the lack of a detectable increase in CYP expression was a true result 

or the product of an insensitive assay, the experiment was repeated after the 

real-time screen was developed. However, no tags with a higher expression were 

identified in the IVM-exposed L3 with this screen. 

 

3.2.4.2 CYP gene expression in IVM-exposed adult wo rms 

The expression of CYP tags in MHco3 (ISE) adult worms exposed to 5 µg/ml 

ivermectin dissolved in 0.05% DMSO for five hours in liquid culture were 

compared with adult worms exposed to 0.05% DMSO in liquid culture only. 

Worms harvested from one donor sheep were split into six batches, allowing the 

drug exposures to be run in triplicate. This generated material for three 

biological replicates. 

 

Gene expression in IVM-exposed and DMSO-control worms had originally been 

compared with the semi-quantitative screen. However, the low constitutive 

adult CYP expression appeared largely unaffected by the drug exposures and it 

was not possible to detect any differences between the IVM-exposed and DMSO-

control worms. 

 

Conversely, the real-time screen did detect a number of differences in 

expression, but these were highly variable (see Figure 3-13). The only tag with 
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statistically significant higher expression in the IVM-exposed samples was Hc-

cyp-tag9, but Hc-cyp-tag41, which is thought to represent the same gene (see 

Chapter 4), showed statistically significant lower expression. Hc-cyp-tag24 

appeared more highly expressed in biological replicate one and three but not in 

biological replicate two, while Hc-cyp-tag62 appeared more highly expressed in 

biological replicates one and two, but not in biological replicate three. 

The expression levels of the remainder of the tags were variable with no 

reproducible induction observed in the IVM-exposed worms. Indeed, a number of 

tags appeared to have slightly reduced expression in the IVM-exposed samples, 

but again the results were highly variable. 

 

3.2.4.3 CYP gene expression in ABZ-exposed adult wo rms 

The expression of CYP tags in MHco3 (ISE) adult worms exposed to 1 mg/ml 

albendazole for five hours in liquid culture was compared with adult worms 

maintained in RPMI medium only. Worms harvested from one donor sheep were 

split into six batches, allowing the drug exposures to be run in triplicate. This 

generated material for three biological replicates of the real-time screen. 

 

Similarly to the IVM-exposure results, the expression levels were highly variable 

(see Figure 3-14). Unexpected higher expression of Hc-act, gtp-ch-1 and hc27 

control genes were measured in the ABZ-exposed sample, complicating 

interpretation of the results. Four CYP tags show a statistically significant higher 

expression level in the ABZ-exposed samples: Hc-cyp-tag1, Hc-cyp-tag6, Hc-cyp-

tag40 and Hc-cyp-tag95, and ten additional tags showed non-statistically 

significant higher expression in the ABZ-exposed sample in three biological 

replicates. 

 

3.2.4.4 RNA-seq comparison of CYP gene expression i n ABZ-exposed adult 

worms  

Illumina technology was used to sequence the transcriptome of 21-day adults of 

the H. contortus MHco3 (ISE) isolate after exposure to 300 µg/ml albendazole (in 

2% DMSO) or 2% DMSO for five hours in liquid culture. The resulting reads were 

mapped to MHco3 (ISE) reference genomic sequence in the 21/08/08 supercontig 
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database (www.sanger.ac.uk/Projects/H_contortus) using Mapping and Assembly 

with Qualities (MAQ) algorithms.  

24 million and 28 million 76 bp reads were generated from sequencing runs of 

ABZ-exposed and DMSO-exposed worm libraries respectively. 

Although the mapped read coverage for the panel of control genes were good for 

both libraries, few or no reads mapped to the CYP tags preventing the 

comparative analysis of this data for this particular gene family. 

3.2.5 CYP gene expression in resistant isolates of H. contortus 

3.2.5.1 Real-time PCR screen comparison of constitu tive CYP gene 

expression in adult MHco3 (ISE) and MHco4 (WRS) iso lates 

The constitutive expression of CYP genes in adult MHco3 (ISE) and MHco4 (WRS) 

isolates was compared. The WRS isolate is a field-derived strain from South 

Africa. It is resistant to ivermectin, benzimidazoles, rafoxanide and closantel 

(van Wyk et al 1987, van Wyk and Malan 1988). 

Adult worm material was harvested from three donor sheep for each isolate, 

allowing three biological replicates of the real-time screen to be run (see Figure 

3-15). Primers were designed to amplify MHco3 (ISE) cDNA, so it was 

hypothesised that the cDNA sequence of a number of tags in the resistant strain 

would be too divergent to amplify (see Chapter 1). The results of the screen 

reflected this; primers for one tag would not amplify MHco4 (WRS) cDNA and 24 

tags showed more than two-fold lower expression in the resistant isolate. This is 

expected to be an overestimate of the true figure due to polymorphism at the 

primer binding sites reducing PCR efficiency in the resistant isolate.  

One of the control genes, Hc-act, showed higher expression in MHco4 (WRS), but 

the other control genes showed little difference in expression between isolates. 

Although not statistically significant at P<0.05, more than two-fold higher 

expression in the resistant isolate was detected for Hc-cyp-tag9, Hc-cyp-tag30, 

Hc-cyp-tag41 and Hc-cyp-tag77. 
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To investigate this further, individual RT-QPCR of RNA replicates of the three 

biological replicates used in the real-time PCR screen were performed to test for 

consistency and individual RT-QPCR experiments were run on two to three new 

biological replicates, depending on the availability of worm material. The results 

are shown in Figure 3-16 and reported below. 

Hc-cyp-tag41 and Hc-cyp-tag9 

Higher expression of Hc-cyp-tag41 was seen in the MHco4 (WRS) isolate for two 

of three real-time screen biological replicates, with the magnitude of difference 

ranging from 2.24 to 2.32 log fold change higher in the resistant isolate. The 

relative expression in the third biological replicate in the real-time PCR screen 

was unknown due to the MHco3 (ISE) well failing to reach threshold. However, 

little difference in expression was detected for two subsequent individual RT-

QPCR experiments using worm material from the real-time screen third 

biological replicate (1.26 and 1.24 times higher in the resistant isolate). Three 

further individual RT-QPCR experiments, each with different worm material, 

found 2.67 to 20.1 fold higher expression in the MHco4 (WRS) isolate relative to 

MHco3 (ISE).  

Hc-cyp-tag41, Hc-cyp-tag55, Hc-cyp-tag70 and Hc-cyp-tag9 are thought to 

amplify the same gene (see Chapter 4). Another tag, Hc-cyp-tag61, represents 

sequence encoding an identical putative 122 amino acid N-terminus to Hc-cyp-

tag41. The coding sequence shares 98% nucleotide identity, but the genomic 

sequence is only 72% identical. Primers for Hc-cyp-tag41 could also amplify Hc-

cyp-tag61 but the primers for Hc-cyp-tag61 should not amplify Hc-cyp-tag41 due 

to the specificity of the reverse primer.  

Expression of Hc-cyp-tag9 was shown to be higher in biological replicates one 

and two of the real-time screen (2.04 and 2.66 log fold change), but again the 

MHco3 (ISE) isolate well failed to reach threshold in biological replicate three. 

Subsequent individual RT-QPCRs with RNA replicates of the three real-time 

screen biological replicates plus two new biological replicates detected no 

higher expression of Hc-cyp-tag9 in the resistant isolate (from 0.27 to 1.00 fold 

MHco3 (ISE) expression).  



Chapter 3: CYP gene expression  59 

Higher expression of Hc-cyp-tag55, Hc-cyp-tag70 and Hc-cyp-tag61 were not 

detected in the MHco4 (WRS) isolate, even in samples showing higher expression 

of Hc-cyp-tag41.  

Hc-cyp-tag2 

With the real-time screen, markedly higher expression of Hc-cyp-tag2 (7.73 log 

fold difference) in the resistant isolate was detected in the first biological 

replicate but not in subsequent biological replicates. Individual real-time RNA 

replicates of the three real-time screen biological replicates failed to detect any 

higher expression in MHco4 (WRS) relative to MHco3 (ISE), although three 

subsequent biological replicates did generate a wide range of values from 1.0 to 

25.1 fold higher expression in the resistant isolate. 

Hc-cyp-tag77 

Hc-cyp-tag77 showed a higher constitutive expression in the MHco4 (WRS) isolate 

in three real-time screen biological replicates of 1.01 to 3.49 log fold change. 

Individual real-time RNA replicates suggested a more modest difference of 1.88 

to 2.73 fold higher expression in MHco4 (WRS). However, two subsequent 

individual real-time biological replicates detected no higher expression of Hc-

cyp-tag77 in the resistant isolate. 

Hc-cyp-tag4 is thought to represent the same CYP as Hc-cyp-tag77 (see Chapter 

4). However results of the real-time screen for Hc-cyp-tag4 were variable, 

showing 1.54, 1.29 and 0.29 log fold changes for the three biological replicates. 

Hc-cyp-tag94 

Although only one biological replicate with the real-time screen showed higher 

expression of Hc-cyp-tag94 in MHco4 (WRS), it was included for individual real-

time experiments due to its putative higher expression in resistant isolate 

MHco10 (CAVR) (see Section 3.2.5.2). The expression level of Hc-cyp-tag94 

appeared similar in both MHco3 (ISE) and MHco4 (WRS) in three RNA replicates of 

the real-time screen material and in one of three new biological replicates. 
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However, higher expression of 3.21 to 13.9 fold that in the susceptible isolate 

was measured in two biological replicates. 

 

Hc-cyp-tag30 

Higher expression of Hc-cyp-tag30 in the resistant isolate was detected in two of 

three biological replicates with the real-time screen (3.83 and 1.93 log fold 

change) with the MHco4 (WRS) well failing to reach threshold in the remaining 

replicate. Experiments to confirm this with individual real-time RNA replicates 

were not undertaken, but three new biological replicates failed to detect a 

higher expression level in MHco4 (WRS). 

3.2.5.2 Real-time screen comparison of constitutive  CYP expression in adult 

MHco3 (ISE) and MHco10 (CAVR) isolates 

The constitutive expression of CYP genes in adult MHco3 (ISE) and MHco10 

(CAVR) isolates were compared. The CAVR isolate is a field-derived strain from 

Australia, which is resistant to ivermectin. It also shows moderate resistance to 

the benzimidazoles, but is sensitive to levamisole (Le Jambre et al 1995). 

Worm material was harvested from three donor sheep for each isolate, allowing 

three biological replicates of the real-time screen to be run (see Figure 3-17). 

Individual quantitative real-time PCR experiments were then used to determine 

the comparative expression of any tags shown by the screen to be more highly 

expressed in the resistant isolate (see Figure 3-18). 

As mentioned above, primers were designed to amplify MHco3 (ISE) cDNA, so it 

was hypothesised that the cDNA sequence of a number of tags in the resistant 

strain would be too divergent to amplify. The results of the screen reflected 

this; primers for nine tags would not amplify MHco10 (CAVR) cDNA and 21 tags 

showed more than two-fold lower expression in the resistant isolate.  

Again, Hc-act, showed higher expression in the resistant isolate, but the other 

control genes showed little difference. A number of CYP tags showed a greater 

than two-fold higher expression in the MHco10 (CAVR) isolate and were followed 
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up with individual real-time experiments. These included Hc-cyp-tag61 and Hc-

cyp-tag94 which were statistically significant at P<0.05. 

Hc-cyp-tag61, Hc-cyp-tag41, Hc-cyp-tag55 and Hc-cyp -tag9 

Hc-cyp-tag41, Hc-cyp-tag55, Hc-cyp-tag70 and Hc-cyp-tag9 are thought to 

represent the same gene (see Chapter 4). Another tag Hc-cyp-tag61 represents 

386bp coding sequence sharing 98% nucleotide identity with Hc-cyp-tag41.  

Higher expression of Hc-cyp-tag61 in the MHco10 (CAVR) isolate was detected 

for all three biological replicates with the real-time screen (2.125, 3.48 and 2.56 

log fold change). The results of individual real-time RNA replicates of the real-

time screen were however variable, with expression levels of 0.38 to 4.94 fold 

those of the MHco3 (ISE) isolate recorded. Two additional biological replicates 

failed to detect a higher expression in the resistant isolate.  

Although higher expression of Hc-cyp-tag41 in MHco10 (CAVR) was only seen in 

two of three real-time screen biological replicates (3.486, 0.566 and -0.106 log 

fold change), two RNA replicates of the real time screen followed by two 

biological replicates showed a consistently higher expression of Hc-cyp-tag41 in 

MHco10 (CAVR) of 1.58 to 6.24 fold relative to the MHco3 (ISE) isolate. 

Higher expression was also seen with the real-time screen for all biological 

replicates of Hc-cyp-tag55 and Hc-cyp-tag70 tags, although the magnitude was 

highly variable: 0.29 to 2.32 log fold change and 0.57 to 2.16 log fold change for 

Hc-cyp-tag55 and Hc-cyp-tag70 respectively. Four individual real-time 

experiments showed little or no higher expression in the resistant isolate for Hc-

cyp-tag55, other than one RNA replicate of material used in the real-time 

screen, which showed a 2.0 fold higher expression.  

Higher expression of Hc-cyp-tag9 was not detected in MHco10 (CAVR) with the 

real-time screen and four individual real-time experiments confirmed this result. 
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Hc-cyp-tag94 

Higher constitutive expression of Hc-cyp-tag94 was seen for MHco10 (CAVR) in 

three real-time screen biological replicates. The magnitude of difference varied 

from 2.72 to 3.49 log fold change. This was confirmed with three individual gene 

RT-QPCR experiments, which showed 3.13 to 8.1 fold higher expression of Hc-

cyp-tag94 in MHco10 (CAVR) relative to MHco3 (ISE). 

Hc-cyp-tag77 

Hc-cyp-tag4 and Hc-cyp-tag77 are thought to amplify the same gene (see 

Chapter 4). Although not statistically significant at P<0.05, both Hc-cyp-tag4 and 

Hc-cyp-tag77 showed a higher but variable expression (1.85, 0.69, 0.1 log fold 

changes for Hc-cyp-tag4 and 0.81, 1.54, 2.59 log fold changes for Hc-cyp-tag77) 

in MHco10 (CAVR) with three real-time screen biological replicates. 

Individual real-time RNA replicates were undertaken for Hc-cyp-tag77 and 

showed 2.45 to 3.75 fold higher expression in the resistant isolate. However, two 

further biological replicates showed a variable expression of 0.39 and 7.69 fold 

difference. 

3.2.5.3 RNA-seq comparison of CYP gene expression i n adult worms of 

MHco3 (ISE), MHco4 (WRS), and MHco10 (CAVR) isolate s 

Illumina technology was used to sequence the transcriptome of 21-day adults of 

the H. contortus MHco3 (ISE), MHco4 (WRS) and MHco10 (CAVR) isolates. The 

resulting reads were mapped to MHco3 (ISE) reference genomic sequence in the 

21/08/08 supercontig database (www.sanger.ac.uk/Projects/H_contortus) using 

Mapping and Assembly with Qualities (MAQ) algorithms.  

21 million, 17 million and 20 million 54 bp reads were generated from 

sequencing runs of MHco3 (ISE), MHco4 (WRS) and MHco10 (CAVR) libraries 

respectively.  

Although the mapped read coverage for the control genes Hc-ama, Hc-act and 

Hc27 was excellent for all isolates, few or no reads mapped to the CYP tags in 
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the resistant isolates, preventing the comparative analysis of this data for this 

particular gene family.  
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3.3 Tables and Figures 

SUPERCONTIG SIZE (bp) HC-CYP-TAG REGION (amino acids) CLOSEST C. elegans CYP

1 2193 54 2-87 14A3
2 1869 42 15-87 14A5
3 3074 63 2-148 14A3
4 1507 46 28-84 14A5
5 23637 50_94_97_62_36_35 425-426,115-191,293-421,293-423,374-461 ,1-95 33C7,14A5,33C2,33C9,14A2,14A5
6 15764 60_34_33_49_30 169-461, 115-190, 289-425 14A5, 14A4, 33C1
7 35550 32_68_69 1-90, 285-462 14A3, 33C6
8 11772 91_39_38_37 1-28, 3-187, 226-390 33E1, 33C9, 33C5
9 2455 95_56 360-425, 291-370 33C7, 33E2

10 1290 84 6-141 33C2
11 114720 16 4-470 33C9
12 1283 81 274-288 33C2
13 1908 45 89-143 33C11
14 1652 40 289-359 33C3
15 28419 22_14 11-42, 108-519 33C9, daf-9=22A1
16 11558 65_64 1-323 23A1
17 1623 82 75-177 23A1
18 1731 10 392-533 23A1
19 13166 66 68-107 13B1
20 1206 7 434-494 13B1
21 4342 90_19 1-62, 268-304 13B2, 13A12
22 1266 78 459-493 13A12
23 1411 8 303-358 13A12
24 1508 79 303-435 13A8
25 12604 2_6 17-439, 434-494 13A12, 13B1
26 23674 1_ 5 17-305, 433-486 13A12, 13B1
27 15981 51_92_93 207-359, 27-61, 15-107 32A1, 32A1, 13B1
28 7475 20 317-462 32B1
29 2551 44 239-341 32A1
30 7109 89 21-141 32A1
31 3426 86_87 234-325, 470-506 32A1, 37B1
32 9075 80 454-507 37B1
33 55737 53_67 463-507, 142-521 37B1, 32A1
34 32949 25_15 1-326,  364-493 31A3, 31A2
35 59191 12_13 22-68, 302-494 13A11, 13A10
36 34267 27 454-507 37B1
37 10155 17_18 1-145, 188-448 33A1, 33E1
38 2507 47_48 61-155, 293-329 34A4, 34A7
39 1522 57 150-194 34A7
40 1146 43 167-329 34A8
41 23723 71_72 28-196, 290-454 34A3, 35A2
42 46749 24_23_52 27-293, 295-429, 379-429 34A3, 34A4, 35A1
43 13088 28 24-147 34A4
44 1110 26 104-137 36A1
45 4635 59_58 140-500 36A1
46 1855 88 325-493 36A1
47 4182 29 38-136 36A1
48 53370 21_96 288-457, 419-506 37A1 , 37B1
49 1024 41 1-122 42A2
50 1400 61 1-122 42A1
51 42261 70_9 274-392, 395-508 42A1, 42A2
52 1054 55 123-210 42A1
53 12719 4 1-467 43A1
54 5373 77 42-142 43A1
55 58931 11_3 48-141, 292-467 43A1, 43A1
56 1501 85 440-481 44A1
57 1405 31 403-439 44A1
58 1268 75 413-482 44A1
59 1020 76 399-481 44A1
60 5818 73_74 96-405 44A1 
61 2584 83 57-94 44A1

462,

 

Figure 3.1: Schematic of 97 CYP tags on 61 supercontigs.  
Each row represents a supercontig and each column represents a full-length CYP gene. 
Coloured regions show the proportion of the gene represented by each tag. Colours relate to 
the closest C. elegans CYP clade (see Chapter 4). 



Chapter 3: CYP gene expression  65 

A: 

 
B: 

 
 

Figure 3.2: Example of a typical CYP tag sequence and typical BLAST result.  
A: Coding sequence of Hc-cyp-tag75 is shown in blue and RT-PCR primers are in white  
B: BLASTp search with conceptual translation of Hc-cyp-tag75 into NCBI database yields a P450 
superfamily conserved domain (partial) and the top hit is a C. elegans CYP 
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Figure 3.3: Preliminary RT-PCR screen of stage specific constitutive expression of 51 CYP tags in 
H. contortus.  
Lanes: 1=L3 cDNA, 2=L3 no-RT control, 3=adult cDNA, 4=adult no-RT control, 5=no template 
control. Hc-ama was included on each gel to normalise CYP expression between stages. 35 PCR 
cycles were run.  
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AMA-1           MALVGVDFQAPLRIVSRVQFGILGPEEIKRMSVAHVEFPEVYENGKPKLGGLMDPRQGVI 60 
HC-AMA          MALVGIDFRAPLREVKRVQFGILSPDEIKRMSVGEIEFPEIYENGKPKKGGLMDPRQGVI 60 
                *****:**:**** *.*******.*:*******..:****:******* *********** 
AMA-1           DRRGRCMTCAGNLTDCPGHFGHLELAKPVFHIGFLTKTLKILRCVCFYCGRLLIDKSAPR 120 
HC-AMA          DRRGRCMTCAGNLADCPGHFAHLELARPVFHIGFLTKTLKILRCVCFYCSKLLLDKDNQR 120 
                *************:******.*****:**********************.:**:**.  * 
AMA-1           VLEILKKTGTNSKKRLTMIYDLCKAKSVCEGAAEKEEGMPDDPDDPMNDGKKVAGGCGRY 180 
HC-AMA          VKDIIRKTQGNPRRRLTLIYDMCKSKVVCDGGNEIENVNPEVEGDDS-EKVIKAGGCGRY 179 
                * :*::**  *.::***:***:**:* **:*. * *:  *:  .*   :    ******* 
AMA-1           QPSYRRVGIDINAEWKKNVNEDTQERKIMLTAERVLEVFQQITDEDILVIGMDPQFARPE 240 
HC-AMA          QPSYRRTGIDIHAEWKKNVNEDTQERKIFLTAERALEIFKQITDEDCVILGMDPRYARPD 239 
                ******.****:****************:*****.**:*:****** :::****::***: 
AMA-1           WMICTVLPVPPLAVRPAVVTFGSAKNQDDLTHKLSDIIKTNQQLQRNEANGAAAHVLTDD 300 
HC-AMA          WMICTVLPVPPLAVRPAVVTFGSARNQDDLTHKLSDIIKTNIQLRNNEANGAAAHVLADD 299 
                ************************:**************** **:.***********:** 
AMA-1           VRLLQFHVATLVDNCIPGLPTATQKGGRPLKSIKQRLKGKEGRIRGNLMGKRVDFSARTV 360 
HC-AMA          VKLLQYHVATLVDNCIPGLPTATQKGGRPLKSIKQRLKGKEGRIRGNLMGKRVDFSARTV 359 
                *:***:****************************************************** 
AMA-1           ITADPNLPIDTVGVPRTIAQNLTFPEIVTPFNVDKLQELVNRGDTQYPGAK----ENGAR 416 
HC-AMA          ITADPNLPIDTVGVPRTIAQNLTFPEIVTPFNIDKLQELVNRGDSQYPGAKYIIRENGAR 419 
                ********************************:***********:******    ***** 
AMA-1           VDLRYHPRAADLHLQPGYRVERHMKDGDIIVFNRQPTLHKMSMMGHRVKILPWSTFRMNL 476 
HC-AMA          VDLRYHPRAADLHLQPGYRVERHMRDGDIIVFNRQPTLHKMSMMGHRVKILPWSTFRMNL 479 
                ************************:*********************************** 
AMA-1           SVTSPYNADFDGDEMNLHLPQSLETRAEIEEIAMVPRQLITPQANKPVMGIVQDTLCAVR 536 
HC-AMA          SVTTPYNADFDGDEMNLHLPQSLETRAEIEEIAMVPRQLITPQANKPVMGIVQDTLCAVR 539 
                ***:******************************************************** 
AMA-1           MMTKRDVFIDWPFMMDLLMYLPTWDGKVPQPAILKPKPLWTGKQVFSLIIPGNVNVLRTH 596 
HC-AMA          MMTKRDVYIDYPRMMDLLMYLPSWEGKVPQPAIMKPKPLWTGKQLFSLIIPGNVNVLRTH 599 
                *******:**:* *********:*:********:**********:*************** 
AMA-1           STHPDSEDSGPYKWISPGDTKVIIEHGELLSGIVCSKTVGKSAGNLLHVVTLELGYEIAA 656 
HC-AMA          STHPDDEDSGPYKWISPGDTKVLVEHGELISGIVCSRTVGRSAGNLLHVVALELG----- 654 
                *****.****************::*****:******:***:*********:****      
AMA-1           NFYSHIQTVINAWLIREGHTIGIGDTIADQATYLDIQNTIRKAKQDVVDVIEKAHNDDLE 716 
HC-AMA          ------------------------------------------------------------ 
                                                                             
AMA-1           PTPGNTLRQTFENKVNQILNDARDRTGSSAQKSLSEFNNFKSMVVSGSKGSKINISQVIA 776 
HC-AMA          ------------------------------------------------------------ 
                                                                             
AMA-1           CVGQQNVEGKRIPFGFRHRTLPHFIKDDYGPESKGFVENSYLAGLTPSEFFFHAMGGREG 836 
HC-AMA          -----------------------------------------------HEFFFHAMGGREG 667 
                                                                ************ 
AMA-1           LIDTAVKTAETGYIQRRLIKAMESVMVNYDGTVRNSLAQMVQLRYGEDGLDGMWVENQNM 896 
HC-AMA          LIDTAVKTAETGYIQRRLIKAMESVMVNYDGTVRNSLAQMIQLRYGEDGLDGMWVENQNM 727 
                ****************************************:******************* 
AMA-1           PTMKPNNAVFERDFRMDLTDNKFLRKNYSEDVVREIQESEDGISLVESEWSQLEEDRRLL 956 
HC-AMA          PTMKPTNMLFERDFKNDLSDEKSLRKYYTEDLVRELQASPEATKELEAEFQQLEEDRRLL 787 
                *****.* :*****: **:*:* *** *:**:***:* * :. . :*:*:.********* 
AMA-1           RKIFPRGDAKIVLPCNLQRLIWNAQKIFKVDLRKPVNLSPLHVISGVRELSKKLIIVSGN 1016 
HC-AMA          RKIFPTGDAKIVLPCNLQRLIWNAQKIFHVETRKVTSLSPLHVIEGVRKLSKKLVIVSGE 847 
                ***** **********************:*: ** ..*******.***:*****:****: 
AMA-1           DEISKQAQYNATLLMNILLRSTLCTKNMCTKSKLNSEAFDWLLGEIESRFQQAIAQPGEM 1076 
HC-AMA          DKISKQAQYNATLLMNILIRSTLCSKKMASTHKLNMEAFDWLIGEIETRFQQAIAQPGEM 907 
                *:****************:*****:*:*.:. *** ******:****:************ 
AMA-1           VGALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKEIINVSKTLKTPSLTVFLTGA 1136 
HC-AMA          VGALAAQSLGEPATQMTLNTFHYAGVSAKNVTLGVPRLKEIINVSKQLKTPSLTVFLQGA 967 
                ********************************************** ********** ** 
AMA-1           AAKDPEKAKDVLCKLEHTTLKKVTCNTAIYYDPDPKNTVIAEDEEWVSIFYEMPDHDLSR 1196 
HC-AMA          AAKDAEKAKDVLCKLEHTTLKKVVSNTAIYYDPDPKNTCIEEDEEWVSIFYEMADFDPSR 1027 
                ****.******************..************* * ************.*.* ** 
AMA-1           TSPWLLRIELDRKRMVDKKLTMEMIADRIHGGFGNDVHTIYTDDNAEKLVFRLRIAGEDK 1256 
HC-AMA          ASPWVLRLELDRKRMTDKKLSMEHIADKIQQGFGDDLNVIYTDDNADKLVFRLRITNQPS 1087 
                :***:**:*******.****:** ***:*: ***:*::.*******:********:.: . 
AMA-1           GE-AQEEQVDKMEDDVFLRCIEANMLSDLTLQGIPAISKVYMNQPNTDDKKRIIITPEGG 1315 
HC-AMA          DKSAEVEQVDKMEDDVFLRCIESNMLSDLTLQGIGSISKVYMHKPTTDDKKRVVITPEGG 1147 
                .: *: ****************:*********** :******::*.******::****** 
AMA-1           FKSVADWILETDGTALLRVLSERQIDPVRTTSNDICEIFEVLGIEAVRKAIEREMDNVIS 1375 
HC-AMA          FKAISEWLLETDGTALLKVLSEQHIDPVRTTSNDICEIFEVLGIEAVRKAIEREMNNVIS 1207 
                **::::*:*********:****::*******************************:**** 
AMA-1           FDGSYVNYRHLALLCDVMTAKGHLMAITRHGINRQEVGALMRCSFEETVDILMEAAVHAE 1435 
HC-AMA          FDGSYVNYRHLALLCDVMTAKGHLMAITRHGINRQEVGALMRCSFEETVDILMEAAVHAE 1267 
                ************************************************************ 
AMA-1           EDPVKGVSENIMLGQLARCGTGCFDLVLDVEKCKYGMEIPQNVVMGGGFYGS-FAGSPSN 1494 
HC-AMA          TDPVKGVSENIMLGQLAKAGTGAFDLVLDAEKCKYGIEVSTMMGMYGGLGQFGAAHSPAS 1327 
                 ****************:.***.******.******:*:.  : * **:     * **:. 
AMA-1           REFSPAHSPWNSGVTPTYAGAAWSPTTGGMSPGAG-FSPAGNTDGGASP--FNEGGWSPA 1551 
HC-AMA          SSMSPVSTPWNGGMTPGYG-AGWSPIGSGMTPGAAGFSPSGHSETGMSPGYGGEGGWSPT 1386 
                 .:**. :***.*:** *. *.***  .**:***. ***:*::: * **   .******: 
AMA-1           SPGDPLGALSPR--TPSYGGMSPGVYSPSSP-QFSMTSPHYSPTSPSYSPTSPAAGQSPV 1608 
HC-AMA          SPADPLGGMSPSGATPRYGGAMSPGYSPTSPNAFGAQSPSYSPTSPHYSPTS-------- 1438 
                **.****.:**   ** ***  .  ***:**  *.  ** ****** *****         
AMA-1           SPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPSSPSYSPSSPSY 1668 
HC-AMA          -PSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPSYSPTSPGY 1497 
                 ***********************************************:******:**.* 
AMA-1           SPSSPRYSPTSPTYSPTSPTYSPTSPTYSPTSPTYSPTSPSYESGGGYSPSSPKYSPSSP 1728 
HC-AMA          SPSSPRYSPTSPTYSPTSPTYSPTSPTYSPTSPTYSPTSPSYG-GSGYSPSSPRYSPTSP 1556 
                ******************************************  *.*******:***:** 
AMA-1           TYSPTSPSYSPTSPQYSPTSPQYSPSSPTYTPSSPTYNPTSPRGFSSPQYSPTSPTYSPT 1788 
HC-AMA          TYSPTSPTYSPTSPQYSPSSPQYSPSSPQYSPSS-------PRPDASPSYSPSSPQYSPT 1609 
                *******:**********:********* *:***       **  :**.***:** **** 
AMA-1           SPSYTPSSPQYSPTSPTYTPSPSEQPGTSAQYSPTSPTYSPSSPTYSPASPSYSPSSPTY 1848 
HC-AMA          SPIYTPSSPQYSPSSP--------------QYSPSSPQYSPSSPNYTPSS----PYSPNY 1651 
                ** **********:**              ****:** ******.*:*:*    * **.* 
AMA-1           DPNS-- 1852 
HC-AMA          DPDNYS 1657 

Figure 3.4: ClustalW alignment of C. elegans AMA-1 and H. contortus HC-AMA.  
82% amino acid identity. ~172 amino acids are missing in HC-AMA due to a gap in the 
supercontig assembly.
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Figure 3.5: Diagram of C. elegans ama-1 gene and H. contortus Hc-ama gene.  

Not to scale. NNN indicates a gap in the supercontig assembly. White arrows indicate RT-PCR 
primer binding sites. The C. elegans gene spans 10.1 Kb and has 12 introns. The parasite gene 
spans at least 10.4 Kb and has at least 43 introns.  

 

 

 

 

Figure 3.6: Hc-ama standard curve.  

Adult H. contortus MHco3 (ISE) cDNA. 1 in 3 dilution over 4 orders of magnitude. RSq = 1.00, 
Efficiency = 102.7%. 
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B: 

 
C: 

 

 
Figure 3.7: Reproducibility of real-time PCR screen.  
Each real-time screen uses two 96-well plates. All genes (controls and CYPs) from both plates 
were included in each replicate. Reproducibility is reflected in the proximity of r2 to 1. 
A: cDNA replicate (same RNA isolation): linear regression y = -0.71+1.05x, r2 = 0.956 
B: RNA replicate (same worm donor): linear regression y = -1.37+1.02x, r2 = 0.953 
C: Biological replicate (different worm donor): linear regression y = -0.44+1.02x, r2 = 0.951
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Figure 3.8: Relative expression of CYP tags in L3 and adult worms of MHco3 (ISE) isolate.  
Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars indicate higher expression in adults; negative bars indicate higher expression in L3 

larvae. A: Three biological replicates of real-time screen. ∆∆∆∆∆∆∆∆CT normalised to Hc-ama. Panel of control genes (C) is shown below. B: Number of 
Illumina transcriptome reads mapped to binding sites of Hc-cyp-tag primers used in real-time screen. Normalised to number of transcriptome 
reads mapped to Hc-ama primer binding sites. Panel of control genes (D) is shown below. 
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Table 3.1: In vitro drug exposure experiments 

 

STAGE ISOLATE XENOBIOTIC FORMULATION CONCENTRATION SOLVENT/CONTROL TIME PHENOTYPE 

L3 MHco3 Albendazole Sigma 500 µg/ml  DMSO (2.5% v/v) 4 hours normal 

L3 MHco3 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

L3 MHco4 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

L3 MHco10 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

L3 MHco4 Albendazole Albex 10 mg/ml no solvent 5 hours normal 

L3 MHco3 Ivermectin Sigma 1 µg/ml DMSO (0.5% v/v) 4 hours - 

L3 MHco3 Ivermectin Sigma 2 µg/ml DMSO (0.05% v/v) 5 hours ~90% paralysed (straight), remainder reduced motility 

L3 MHco4 Ivermectin Sigma 2 µg/ml DMSO (0.05% v/v) 5 hours ~50% paralysed (straight), remainder reduced motility 

L3 MHco10 Ivermectin Sigma 4 µg/ml DMSO (0.1% v/v) 5 hours ~80% paralysed (straight), remainder reduced motility 

L3 MHco3 Ivermectin Sigma 5 µg/ml DMSO (2.5% v/v) 4 hours 100% paralysed (straight) 

L3 MHco3 Phenobarbital  - 50 µg/ml DMSO (0.5% v/v) 24 hours normal 

L3 MHco3 Phenobarbital  - 1 mg/ml DMSO (1% v/v) 5 hours normal 

L3 MHco3 Phenobarbital  - 1 mg/ml DMSO (1% v/v) 24 hours normal 

L3 MHco3 Phenobarbital  - 1 mg/ml DMSO (1% v/v) 24 hours normal 

L3 MHco3 Caffeine Sigma 10 mg/ml no solvent 5 hours ~80% paralysed (curved), remainder reduced motility 

L3 MHco3 Phenothiazine Sigma 1mg/ml no solvent 5 hours ~40% curling up, remainder reduced motility 

L3 MHco3 Propanol  - 1% v/v no solvent 5 hours ~60% paralysed (curved), remainder reduced motility 

Adult MHco3 Albendazole Sigma 300 µg/ml DMSO (2% v/v) 5 hours normal 

Adult MHco3 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

Adult MHco4 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

Adult MHco10 Albendazole Albex 1 mg/ml no solvent 5 hours normal 

Adult MHco3 Ivermectin Virbamec 5 µg/ml no solvent 5 hours 100% paralysed (straight) 

Adult MHco4 Ivermectin Virbamec 5 µg/ml no solvent 5 hours 100% paralysed (straight) 

Adult MHco10 Ivermectin Virbamec 5 µg/ml no solvent 5 hours 100% paralysed (straight) 

Adult MHco3 Ivermectin Sigma 5 µg/ml DMSO (0.05% v/v) 5 hours 100% paralysed (straight) 

Adult MHco10 Phenobarbital  - 500 µg/ml  DMSO (0.5% v/v) 4 hours normal 
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Figure 3.9: Relative expression of CYP tags in L4 larvae and adult worms of MHco3 (ISE) isolate assayed with real-time PCR screen.  

Three biological replicates. ∆∆∆∆∆∆∆∆CT normalised to Hc-ama. Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars indicate higher expression 
in adults; negative bars indicate higher expression in L4 larvae. A: Hc-cyp-tags. B: Panel of control genes. 
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Figure 3.10: Histogram of CYP tag expression as proportion of Hc-ama expression in L3, L4 and adult stages assayed with real-time PCR screen 

Figures on x-axis relate to Hc-cyp-tag numbers. Threshold values (CT) for CYP tags and Hc-ama were subtracted from 40 (maximum threshold 
value from 40 rounds of RT-QPCR amplification) then CYP tag value was divided by Hc-ama value. Adult CTs were pooled from the L3 versus adult 
real-time PCR screen (Figure 3-8) and the L4 versus adult real-time PCR screen (Figure 3-9). 
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Figure 3.11: Relative expression of CYP tags in soma and intestine of adult worms of the Beltsville isolate assayed with real-time PCR screen.  

∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars indicate higher expression in 
the intestine; negative bars indicate higher expression in the soma. A: Hc-cyp-tags. B: Panel of control genes. 
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Figure 3.12: Relative expression of CYP tags in male and female adult worms of MHco3 (ISE) isolate assayed with real-time PCR screen.  

Three RNA replicates. ∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars 
indicate higher expression in female; negative bars indicate higher expression in male. A: Hc-cyp-tags. B: Panel of control genes. 
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Figure 3.13: Relative expression of CYP tags in IVM-exposed and DMSO-exposed adult worms of MHco3 (ISE) isolate assayed with real-time PCR 

screen. Three biological replicates. ∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. 
Positive bars indicate higher expression in IVM-exposed worms; negative bars indicate lower expression in IVM-exposed worms. A: Hc-cyp-tags. B: 
Panel of control genes. 
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Figure 3.14: Relative expression of CYP tags in ABZ-exposed and non-ABZ-exposed adult worms of MHco3 isolate assayed with real-time PCR 

screen. Three biological replicates. ∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. 
Positive bars indicate higher expression in ABZ-exposed worms; negative bars indicate lower expression in ABZ-exposed worms. A: Hc-cyp-tags. B: 
Panel of control genes. 
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Figure 3.15: Relative expression of CYP tags in adult worms of MHco3 (ISE) and MHco4 (WRS) isolates assayed with real-time PCR screen. Three 

biological replicates. ∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars indicate 
higher expression in MHco4 (WRS) isolate; negative bars indicate higher expression in MHco3 (ISE) isolate. A: Hc-cyp-tags. B: Panel of control 
genes.
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Figure 3.16: Individual RT-QPCR of CYP tag expression in adult MHco4 (WRS) worms relative to adult MHco3 (ISE) worms.  
RNA replicates of three biological replicates used for each real-time screen plus three new biological replicates with worm material from different 
donor sheep. A value of one indicates no difference in expression between isolates; a value of greater than one indicates higher expression in the 
MHco4 (WRS) isolate. Scale is fold difference. 
Worm material used for biological replicate 5 for Hc-cyp-tag9 and Hc-cyp-tag77 was from different donor sheep than that used for biological 
replicate 5 for other tags. Hc-cyp-tag9 and Hc-cyp-tag77 were not measured in biological replicate 4. 
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Figure 3.17: Relative expression of CYP tags in adult worms of MHco3 (ISE) and MHco10(CAVR) isolates assayed with real-time PCR screen.  

Three biological replicates. ∆∆∆∆∆∆∆∆CT normalised to three Hc-ama replicates per plate. Figures on x-axis relate to Hc-cyp-tag numbers. Positive bars 
indicate higher expression in MHco10 (CAVR) isolate; negative bars indicate higher expression in MHco3 (ISE) isolate. A: Hc-cyp-tags. B: Panel of 
control genes. 
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Figure 3.18: Individual RT-QPCR of CYP tag expression in adult MHco10 (CAVR) worms relative to adult MHco3 (ISE) worms 
RNA replicates of three biological replicates used for each real-time screen plus three new biological replicates with worm material from different 
donor sheep. A value of one indicates no difference in expression between isolates; a value of greater than one indicates higher expression in the 
MHco10 (CAVR) isolate. Scale is fold difference. 
A screen 3 replicate was not undertaken for Hc-cyp- tag41 and Hc-cyp-tag9.
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3.4 Discussion 

The low constitutive expression level of CYPs in adult H. contortus worms has, in 

the past, lead workers to question their existence (Barrett 1998, Pemberton and 

Barrett 1989, Precious and Barrett 1989a,Precious and Barrett 1989b). Despite 

compelling evidence of CYP-catalysed metabolism in H. contortus larvae (Kotze 

1997) and the identification of a large family of CYPs in C. elegans (Gotoh 1998) 

the historic consensus that parasitic nematodes lack CYPs continues to prevail in 

today’s literature (Barrett 2009, Yadav et al 2010).   

3.4.1 Measuring expression of the CYP family 

Due to the ongoing difficulties in assembling the H. contortus genome, a ‘tag’ 

approach for measuring CYP expression was developed. This allowed 

experimental work to be undertaken based on partial gene sequences only, with 

the resulting information directly applicable to the family of full length CYPs. 

The results of a real-time PCR screen of CYP tag expression indicated that the 

constitutive expression of CYPs differ between life stages, tissues and sexes. CYP 

activity appeared to be highest in larval stages, with both L3 and L4 samples 

showing a higher constitutive expression than adults for the vast majority of CYP 

tags. The higher expression of CYPs in L3s than adults was confirmed with RNA-

seq transcriptome data. This finding was consistent with work by Kotze (1997) 

where mono-oxygenase activity in microsomal preparations from three H. 

contortus life stages was measured, identifying high activity in L1 and L3 larvae, 

but minimal activity in adults.  

Similarly, in C. elegans, CYP mRNA expression is up-regulated in the dauer stage, 

an arrested L3 form (Burnell et al 2005). This life stage is non-feeding and has a 

sealed intestine and protective cuticle, so its metabolic requirements may be 

comparable to those of the H. contortus L3. The dauer is thought to require 

increased CYP activity to metabolise toxic endogenous metabolites and an up-

regulation of lipophilic hormones for the maintenance of and recovery from the 

dauer state. Free-living stages are also likely to be exposed to a wide range of 
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environmental toxins, so H. contortus L3 may require a higher CYP activity than 

adults to detoxify exogenous compounds. 

For adult stages, the relevance of comparisons between C. elegans aerobic 

metabolism and parasite metabolism in the oxygen-limited environment of the 

host intestine may be more limited. C. elegans is capable of anaerobic 

respiration, although the efficiency of metabolism is depressed to 3-4% of 

aerobic levels, measured by ATP production (Foll et al 1999). Kotze (1997) 

conjectured that the decrease in CYP activity from L3 to adult could parallel a 

transition from aerobic metabolism outside the host to anaerobic metabolism in 

the host abomasum.  

Interestingly, the results of the real-time screen indicated a high CYP expression 

in H. contortus L4, which like the adult worms, reside in the abomasum. This 

would suggest the abomasal environment does not necessarily prohibit CYP 

activity, as does the higher adult expression of a small subset of CYPs and the 

adult expression of NADPH-cytochrome reductase. One hypothesis would be that 

the parasite could derive an adequate supply of molecular oxygen from the host 

blood supply to facilitate CYP activity. An extreme example of this would be the 

high levels of CYP activity detected in microsomal preparations from adults of 

the blood-fluke Schistosoma mansoni (Saeed et al 2002). Adults of the hookworm 

Nippostrongylus brasiliensis reside in the small intestine, yet also maintain a 

functional aerobic respiratory chain, relying on oxygen as the terminal electron 

acceptor (Fry and Jenkins 1983, Fry and Jenkins 1984). This is facilitated by their 

attachment to the gut mucosa, where oxygen tensions are higher than in the 

lumen. H. contortus adults, which attach to the abomasal mucosa, were also 

shown to be capable of both aerobic and anaerobic respiration (Fry and Jenkins 

1984). 

Consistent with this, it was hypothesised that CYPs might catalyse both aerobic 

and anaerobic pathways of metabolism in H. contortus. In 1999, Kotze showed 

that H. contortus L3 were capable of peroxide-supported CYP activity 

independent of a supply of molecular oxygen in vitro. However, the results for 

adults were inconclusive: in vitro oxidase activity was demonstrated in 

microsomal preparations from adult worms, but was inhibited by both CYP and 

peroxidase inhibitors.  
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Highest expression for the majority of CYPs was detected in the parasite 

intestine. This would be consistent with a possible role in xenobiotic 

metabolism, as the nematode intestine is considered to be the prime site of 

detoxification (An and Blackwell 2003, McGhee 2007). In C. elegans a number of 

CYPs are known to be expressed in the intestine including cyp13a7, cyp14a3, 

cyp33c2, cyp33e2 and cyp35a2, all of which have proven to be inducible on 

exposure to xenobiotics (Chakrapani et al 2008, Menzel et al 2001). In D. 

melanogaster, most CYPs are expressed in the midgut, Malpighian (renal) tubules 

and fat body, which constitute the main organs of detoxification in insects, with 

a smaller number expressed in the head, gonads and hindgut (Chung et al 2009). 

Expression of the insecticide resistance gene cyp6g1 occurs in the organs of 

detoxification listed (Chung et al 2007). 

Interestingly, a large number of CYP tags appeared to be more highly expressed 

in adult males than females. Although the smaller size of the males may have 

resulted in a greater proportion of intestinal material included in the male 

sample, the intestinal-expressed control gene hc27 could not clarify this, as it is 

also more highly expressed in females (Hartman et al 2001). However, it is likely 

that a number of CYP tags would have male-specific roles. In D. melanogaster, 

CYPs have been associated with male behavioural phenotypes, with expression 

of cyp6a20 linked to male aggressive behaviour in an inducible and reversible 

manner (Wang et al 2008) and cyp4d21 facilitating mating in adult male flies 

(Fujii et al 2008). In C. elegans, cyp22a1 (daf-9) expression is thought to inhibit 

dauer formation and promote reproductive development (gonadal outgrowth) 

controlled via a positive feedback loop from the downstream NR, daf-12 (Gerisch 

and Antebi 2004). The daf-12 pathway is also thought to regulate mate searching 

behaviour in fully developed adult males (Kleemann et al 2008). In the real-time 

screen, putative H. contortus homologues of both these genes (Hc-cyp-tag14 and 

Hc-nhr) showed highest expression in the larval stages and higher male than 

female expression in the adult. 

Characteristic expression profiles were used to group and sequence between CYP 

tags representing the same genes (see Chapter 4). This facilitated the 

identification of putative orthologues of C. elegans CYPs with stage, tissue and 

sex specific expression. Hc-cyp-tag15 and Hc-cyp-tag25 were most highly 

expressed in the adult female body and represent a single gene homologue of 
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the closely related C. elegans pod-7 (cyp31a2) and pod-8 (cyp31a3) genes, which 

are expressed in gonads, oocytes and embryos and are involved in the production 

of eggshell lipids (Benenati et al 2009). 

A small number of CYPs were more highly expressed in anthelmintic-resistant 

adult worms than in the susceptible isolate. Although the magnitude of 

difference was variable, in the context of such high variability in the expression 

of the other CYPs, their relative consistency is perhaps more noteworthy. 

Further, much of the variability could be attributed to the low level of 

expression in the susceptible isolate. 

Hc-cyp-tag41 showed the most consistent higher expression in the ivermectin 

and benzimidazole-resistant MHco4 (WRS) isolate relative to the susceptible 

MHco3 (ISE) isolate. However, in one biological replicate, a higher expression 

level was not recorded, suggesting this finding was not universal. Hc-cyp-tag9, 

Hc-cyp-tag55 and Hc-cyp-tag70, which amplify the same gene as Hc-cyp-tag41, 

did not show a consistently higher expression. This may be due to polymorphism 

reducing the efficiency of primer binding for these tags, as primers were 

designed for the MHco3 (ISE) isolate, or alternatively the Hc-cyp-tag41 primers 

may also amplify a conserved region in a different gene with higher expression in 

the resistant isolate. 

Hc-cyp-tag94 was more highly expressed in the ivermectin-resistant MHco10 

(CAVR) isolate than the susceptible MHco3 (ISE) isolate in all five biological 

replicates. Interestingly, Hc-cyp-tag94 was not more highly expressed in the 

MHco4 (WRS) isolate, which would suggest the mechanisms of resistance vary 

between isolates, if up-regulation of this gene was involved in MHco10 (CAVR) 

resistance. Anthelmintic-resistant isolates have recently been generated from 

backcrosses of MHco3 (ISE) and MHco4 (WRS) worms and backcrosses of MHco3 

(ISE) and MHco10 (CAVR) worms. These may provide valuable information 

regarding the mechanisms of resistance in the parent isolates, as it is hoped that 

only the resistant genes will differ between the backcross isolates and MHco3 

(ISE).  

Similarly to Hc-cyp-tag41 in MHco4 (WRS), Hc-cyp-tag77 showed higher 

expression in MHco10 (CAVR) in four biological replicates but no difference in 
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expression in biological replicate five. Although this underlined the importance 

of performing as many biological replicates as possible, a constant consideration 

was the requirement of donor sheep to generate the parasite material. In 

addition, the quantity of starting RNA required to measure a large number of 

genes expressed at low levels was not insignificant. 

The importance of such a low level of adult CYP expression for xenobiotic 

metabolism and resistance has been questioned. Metabolism of CYP substrates 

ethoxycoumarin and aldrin in adult H. contortus microsomes was 500-fold to 

nearly 2000-fold lower than in mammalian liver microsomes for the former and 

10 000-fold lower than in rodent liver microsomes for the latter (Kotze, 1997). 

However, as the real-time screen shows, adult worms do express a small number 

of CYPs relatively highly, which would be missed in a pooled measurement of 

CYP activity. Further, the choice of substrates used to measure overall activity 

could give significantly different results depending on the particular CYPs they 

target. In D. melanogaster, 10 to 100-fold higher expression of a single gene 

cyp6g1 is known to confer multi-drug resistance (Daborn et al 2002) and it would 

seem possible that a single highly expressed CYP could also confer resistance in 

adult nematodes in the context of a family of collectively low expression. 

A number of CYPs showed no expression or significantly lower expression in the 

resistant isolates in all biological replicates. This was predicted to be a result of 

polymorphism at primer binding sites, as the screen was designed from and for 

MHco3 (ISE) sequence only. Since no reference sequence was available for the 

resistant isolates, no attempts were made to design primers for the divergent 

sequence, although it could be argued that these may be relevant genes for 

further research, as they could be xenobiotic responsive CYPs under selection 

pressure. An alternative interpretation would be that a number of these CYPs 

were truly down-regulated in the resistant isolates, which could benefit the 

parasite by decreasing the activation of a pro-drug or production of a toxic 

metabolite. For example, chlorpyrifos resistance in D. melanogaster has been 

shown to increase rather than decrease with administration of piperonyl 

butoxide (Ringo et al 1995). Interestingly, a comparison of oxidase activities 

between macrocyclic-susceptible (McMaster) and –resistant (CAVR) isolates of H. 

contortus found similar levels of 7-ethoxycoumarin O-deethylase and aldrin 

epoxidase activities in the L3 stages but lower aldrin epoxidase activities in the 
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resistant isolate in the adult stage (Kotze 2000). This was hypothesised to be a 

result of lower activity of soluble peroxidase enzymes in the CAVR adults rather 

than lower CYP activity, as the difference was only detected in whole worm 

samples (microsomal and soluble fractions) and not in exclusively microsomal 

samples. 

3.4.2 Limitations of the real-time screen 

One of the aims of this project was to design a large throughput screen to detect 

CYPs showing differential expression, which could then be confirmed by more 

sensitive means.  

Linear regression analysis had suggested the overall reproducibility of the screen 

was good, but an inverse relationship between gene expression level and degree 

of variation measured between screen replicates was apparent. This was 

concerning for the detection of putative xenobiotic metabolising CYPs which 

would potentially have a low constitutive expression that would only be induced 

in response to the substrate or up-regulated in a resistant isolate. Consistent 

with this, Hc-cyp-tag41 which was more highly expressed in the anthelmintic-

resistant MHco4 (WRS) isolate in five of six biological replicates, showed a low 

constitutive expression in the anthelmintic-susceptible MHco3 (ISE) isolate. 

Further, cDNA replicates clarified that much of the variation in magnitude of 

relative expression level was generated by fluctuations in measured CT values 

for Hc-cyp-tag41 in the MHco3 (ISE) isolate only. This may suggest a comparison 

of absolute expression levels for each isolate, rather than a relative expression 

level between isolates, would be valuable for genes with low expression. 

Biological variation in gene expression between individuals can complicate gene 

expression studies. Studies into the expression of the CYP family may be 

especially prone to individual variation as enzymes are expressed differentially 

with factors such as life stage, sex and food intake. Adult worms were staged at 

21 days, but were not sexed before being split into batches for biological 

replicates of drug exposure experiments, or before snap freezing for constitutive 

expression comparisons between isolates. In light of the large difference in CYP 

expression between sexes, it would be recommended to do this in future.  
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The drug-exposure experiments showed an especially high degree of variation. 

Although it is possible that the xenobiotic-treatment elicited a different 

response in individual worms, experimental error was deemed more likely. The 

iterative nature of this project meant that over time a number of CYP tags were 

identified as amplifying the same gene, but these were maintained in the real-

time screen as internal controls. A number of these associated tags showed 

contradictory differences in expression in the drug-exposure experiments and in 

the case of the ABZ-exposure experiment, the expression of the control genes 

Hc-act, gtp-ch-1 and hc27 appeared to be higher in the drug-exposed samples. It 

is possible that this was due to anthelmintic residues affecting the PCR 

reactions, although all worm samples were rinsed after exposure, no 

abnormalities were noted in the RNA samples (analysed with light 

spectrophotometry and run on an Ethidium bromide agarose gel), and cDNA 

template was purified before use in the screen. Interestingly, the control gene 

Hc-act, also showed higher constitutive expression in both resistant isolates. This 

is unlikely to be an artefact of normalisation as the other control genes showed 

little difference in expression. In addition, the consistency of Hc-act expression 

in the real-time PCR screen comparisons of life stages, tissues (higher in soma as 

expected) and sexes suggest it is a reliable control gene for the MHco3 (ISE) 

isolate. It is possible that expression of this gene is higher in the resistant 

isolates, but it is perhaps more likely that the primers amplify more than one 

member of the actin family in MHco4 (WRS) and MHco10 (CAVR). 

22 CYP tags identified in the genome were not amenable to primer design, so 

were not included in the screen. Seven tags could not be amplified from adult or 

L3 cDNA and may represent pseudogenes or CYPs with particularly low 

constitutive expression. It would be interesting to investigate these genes 

further and attempt to determine their expression patterns as it is possible this 

subset includes candidate xenobiotic metabolising genes, which have so far been 

missed. 

3.4.3 Conclusion 

The H. contortus genome encodes a large number of cytochrome P450 genes. 

CYP activity appears higher in the larval stages than in the adult, which may 
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reflect a role in metabolising endogenous toxins and compounds essential for 

development or the greater exposure of free-living stages to environmental 

toxins. The importance of CYPs in xenobiotic detoxification in the adult worm is 

unclear. However, the high expression of a small subset of CYP genes as well as 

NADPH-cytochrome P450 reductase, suggests that CYP-catalysed metabolism is 

important in the adult. Further, the large artillery of potentially inducible CYPs 

encoded in the genome would make a role in xenobiotic detoxification distinctly 

possible. 
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4 Assembly of the CYP family and 

characterisation of genes of interest 

4.1 Introduction 

Cytochrome P450s (CYPs) have been identified in virtually all living organisms 

including animals, plants, bacteria and fungi (Nelson et al 1996). The family size 

varies dramatically between species. At one extreme are the yeast genomes, 

encoding only two (Schizosaccharomyces pombe) or three (Saccharomyces 

cerivisiae) CYPs, while at the other is the rice genome, encoding 323 CYPs 

(Nelson et al 2004).  

In insects, the honeybee has a dramatically reduced CYP family of only 46 genes 

(Claudianos et al 2006), relative to 90 in  D. melanogaster (Tijet et al 2001) and 

106 in A. gambiae (Feyereisen 2006). This corresponds to a similar decrease in 

the number of GSTs and carboxyl/cholinesterases encoded in the honeybee 

genome and is thought to play a role in its sensitivity to pesticides. A small 

subset of CYP family members have however undergone recent expansion in the 

honeybee and these may be involved in biosynthesis of pheromones to facilitate 

the high level of social organisation displayed by bees (Claudianos et al 2006). 

The number of CYPs in nematode species also varies widely. In clade V, the 

genomes of closely related nematodes C. elegans and C. briggsae encode 80 and 

73 CYPs respectively, but P. pacificus has 198 CYPs (Dieterich et al 2008, Gotoh 

1998, Stein et al 2003). The CYP family expansion in P. pacificus is paralleled by 

an expansion in other families of detoxification genes such as the GSTs, SULTs 

and ABC-transporters (Dieterich et al 2008) and is thought to act as a defence 

against microbes and toxins inherent in the P. pacificus necromenic lifestyle.  

These findings suggest the CYP family is evolving rapidly. Frequent gene 

duplications and losses have resulted in clusters of related CYP genes with a high 

number of pseudogenes and detritus exons arranged in tandem (Baldwin et al 

2009, Nelson et al 2004, Thomas 2006, Thomas 2007, Tijet et al 2001). In the 

human and mouse CYP families, the number of CYP pseudogenes nearly matches 

the number of functional CYPs and as pseudogenes are not conserved by natural 
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selection, their presence suggests they are being generated continuously (Nelson 

et al 2004).  

The mammalian CYP family is divided into families and subfamilies. Family 

members share more than 40% amino acid identity and subfamily members share 

more than 55% amino acid identity (Nelson et al 1993). Gotoh (1998) classified 

the C. elegans CYPs into three clades, A, B and C (see figure 4-1), which 

correspond closely to the mammalian CYP2, CYP3 and CYP4 families 

respectively. In many cases CYPs within families and subfamilies share 

significantly higher identity than the 40% and 55% amino acid identity cut-offs, 

but the divergence between CYPs of different families can be high (Gotoh 1998). 

H. contortus was historically thought to lack CYPs (Barrett 1998, Pemberton and 

Barrett 1989, Precious and Barrett 1989a,Precious and Barrett 1989b) but the 

sequencing of the parasite’s genome facilitated identification of 61 contigs 

encoding 97 partial CYP sequences (see chapter 3). The aim of the work 

presented in this chapter was to assemble the partial sequences into full length 

genes where possible and to group H. contortus CYPs into putative families for 

comparison with C. elegans. CYP genes shown by the real-time PCR screen to 

have characteristic expression patterns in different life stages, tissues and sexes 

or higher expression in anthelmintic-resistant isolates were investigated in more 

detail. 

4.2 Nomenclature for H. contortus CYP genes 

As described in Chapter 3, a nomenclature for H. contortus genes based on their 

putative orthologues in C. elegans was unsuitable for this rapidly evolving family 

and for the partial gene sequences, the standard CYP nomenclature system 

cannot be applied. 

Therefore, to retain neutrality until the genome is complete, each full length 

CYP sequence was given the identifier ‘Hc’ for H. contortus, ‘cyp’ for 

cytochrome P450 and a number e.g. Hc-cyp-1. Incomplete CYP sequences 

retained their ‘tag’ name, but where multiple CYP tags were assembled on the 

same contig, the addition of “+” between tags thought to represent the same 

gene and “_” between tags representing different genes or where the 
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association could not be determined, was included in the nomenclature e.g. Hc-

cyp-tag1_5. 

4.3 Approaches to assemble full length CYP genes  

4.3.1 Molecular biology approach 

Firstly, attempts were made to amplify cDNA products by PCR between CYP tags 

located on the same supercontigs provided they were on the same strand and 

their assembly would result in the expected linear order of amino acids. This 

process was then extended to tags shown to have similar expression patterns in 

the real-time screen. For example, unlike the majority of CYP tags, Hc-cyp-

tag15 and Hc-cyp-tag25 most were most highly expressed in adult, female and 

body samples, so PCR amplification and sequencing was used to confirm that 

they represented the same gene (see Figure 4-2A). 

CYP tags with a high constitutive expression in MHco3 (ISE) adult worms were 

most amenable to this process, due to the availability of template and the 

relative ease of amplification. However, hemi-nested and nested PCR 

amplification between Hc-cyp-tag41, Hc-cyp-tag9, Hc-cyp-tag55 and Hc-cyp-

tag70 facilitated sequencing of the single gene they represent (see Figure 4-2B), 

which was of interest due to the higher expression of Hc-cyp-tag41 identified in 

the MHco4 (WRS) isolate relative to MHco3 (ISE) isolate. 

Analysis of expression profiles was a useful method of associating tags, but they 

were only considered to represent the same gene once a product had been PCR 

amplified between them, due to the risk that close family members could share 

similar expression patterns.  

When RNA-seq data was generated and transcriptome reads were mapped to the 

reference sequence in the supercontig database, it revealed coding sequence 

that BLAST homology alone could not detect. This was especially useful for the 

most 5’ exons of H. contortus CYP genes, which had previously proven difficult 

to identify as the 5’ ends of CYPs encode the membrane-binding regions of the 

proteins and appear to be most divergent from those in C. elegans. Further 

annotation of the CYP tags guided by mapped MHco3 (ISE) adult and MHco3 (ISE) 
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L3 reads facilitated the assembly of a small number of tags and confirmed that a 

larger number of tags represented different genes by revealing divergent coding 

sequence. 

Using these methods, the original 97 CYP tags were assembled into 73 larger CYP 

tags (see Figure 4-3). 

4.3.2 Bioinformatic approach 

When Gotoh (1998) assembled the C. elegans CYP family, he suggested close 

family members should differ by at least 1% at the amino acid level. For this 

distinction, at least 95% of the protein sequence was needed, which was lacking 

for many of the H. contortus CYP sequences identified.  

16 CYP tags (eight pairs) encoded sequence with 100% amino acid identity to 

another tag encoded on a different contig, but alignment of the genomic 

sequence between pairs demonstrated significantly lower identity. For example, 

Hc-cyp-tag41 and Hc-cyp-tag61 shared 100% amino acid identity and 98% exonic 

nucleotide identity, but only 72% genomic nucleotide identity. For the purposes 

of the real-time PCR screen, these tags were considered to represent different 

genes to avoid incorrectly classifying close family members as single genes, but 

with the understanding there may be a degree of redundancy with some CYP 

tags. Although this conservative approach was appropriate for the screen, a 

more realistic model for assembling the family would include options for 

polymorphism and allelic variation. 

The supercontig database was generated from genomic DNA isolated from 

multiple adult worms so allelic variation could generate variant CYP sequence. 

Differentiating this from the (often minimal) sequence divergence of two closely 

related but different CYP genes proved challenging. For example, in C. elegans, 

cyp25a4 and cyp25a5 are closely related yet distinct genes residing on 

chromosome III and chromosome IV respectively and their 2165 bp genomic 

sequences share 98% nucleotide identity.  

 

Since close family member genes could potentially be more similar than allelic 

variants of the same gene, forcing assembly of consensus sequences was 
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predicted to be counter productive and more meaningful information could 

derived from the remaining tags in their unassembled state.  

 

4.4 Classification into putative families 

Despite falling short of the 95% sequence required to distinguish subfamily 

members (Gotoh 1998), it was possible to tentatively group the unassembled 

parasite CYP tags into families, based on those in C. elegans. 

 
Table 4-1 shows the 73 CYP tags grouped into putative families, based on the 

closest matched CYP genes in C. elegans. Although there was a risk that the 

shorter tags would change groups when their full sequence was determined, the 

greater divergence between family groups ensured that longer tags could be 

more confidently classified. The 15 CYP tags encoding more than 75% of a 

polypeptide were aligned to the closest C. elegans polypeptide to determine the 

% identity. CYPs in the same family should share >40% amino acid identity and 

subfamily members should share >55% (Nelson et al 1993). 

 

The greatest number of tags were grouped into the CYP33 family, which is the 

largest CYP family in C. elegans with 18 members. The CYP13, CYP14 and CYP34 

families are also large in the model worm and the high number of CYP tags 

assigned to these groups in the parasite may reflect this. However, only one CYP 

tag was placed in the CYP35 family, which has ten members in C. elegans. 

Similarly, no tags were assigned to the CYP25 family, which has six members in 

C. elegans. Interestingly, all of the six CYP tags that grouped in the CYP37 

family, which has two members in the model worm, encoded only the C termini 

of polypeptides, but in all other groups the entire lengths of polypeptides were 

more evenly represented. 

 

4.5 Gene conservation and divergence 

Figure 4-4 shows a neighbour-joining tree of conceptual translations of CYP tags 

aligned with the family of CYP polypeptides in C. elegans. Phylogenetic 

relationships could not be inferred between tags representing different regions 

of genes, so a number of short tags had to be excluded from the analysis.  
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In general, the positioning of the CYP tags within the phylogenetic tree, agreed 

with the putative family groupings in Table 4-1. However, a number of CYP tags 

which had been grouped in the CYP34 family, clustered equally with the CYP34 

and CYP35 families in the tree, which may explain the lack of CYP35 homologues 

identified with BLAST searching alone. In general, bootstrap values were high, 

especially so for tags clustering with single-member CYPs in C. elegans, 

suggesting these may be more highly conserved between the species. 

 
In a survey of ten vertebrates, (Thomas 2007) found that all CYP genes could be 

classified as either phylogenetically stable or phylogenetically unstable, and the 

divide was about even for each species studied. He found that CYPs with known 

endogenous functions were more likely to be stable, with no or few gene 

duplications or losses, while CYPs with a role in xenobiotic metabolism were 

most commonly found in unstable gene clusters, proposed to have arisen by local 

gene duplication.  

4.5.1 Single family member genes 

In C. elegans cyp22a1, cyp23a1, cyp36a1, cyp42a1, cyp43a1 and cyp44a1 are 

genes in single member families, so these were hypothesised to represent 

phylogenetically stable CYPs. As seen in Table 4-1 and Figure 4-4, these may also 

be stable in H. contortus as in general, fewer tags were grouped into these 

families, most represented contiguous sequence rather than numerous copies of 

the same region of a gene, and bootstrap values were 100 for all. 

C. elegans cyp22a1 (daf-9) is a single-family member cytochrome P450 involved 

in promoting reproductive development and regulating the dauer pathway. Hc-

cyp-tag22+14 was the only homologue identified. 

C. elegans cyp23a1 is a single-family member CYP of unknown function sharing 

most identity to human CYP7B1, mutations of which lead to giant cell hepatitis. 

Both Hc-cyp-tag65+64 and Hc-cyp-tag82 encoded N-termini with high identity to 

CYP23A1. Although Hc-cyp-tag65+64+10 and Hc-cyp-tag82 shared 100% amino 

acid identity and 93% exonic nucleotide identity, the available intronic 

sequences only shared 74-85% identity due to a number of SNPs and two 

deletions (of 13 bp and 29 bp) in the Hc-cyp-tag82 genomic sequence.  



Chapter 4: Assembly of CYP family and characterisation of genes of interest 96  

Four CYP tags shared most identity with cyp36a1, a gene of unknown function in 

C. elegans. Hc-cyp-tag26 represented a single exon sharing 100% predicted 

amino acid identity with Hc-cyp-tag29 sequence, 92% coding nucleotide identity 

but less than 40% genomic nucleotide identity. In C. elegans, there are three 

known alleles of cyp36a1, due to transposon insertions in the corresponding 

region of the gene represented by Hc-cyp-tag26 and Hc-cyp-tag29, but there was 

no transposon-like or repetitive sequence on either contig in H. contortus. Hc-

cyp-tag59+58 and Hc-cyp-tag88 both represented 3’ ends of a homologous gene 

to cyp36a1, and shared 98% amino acid identity, 96% coding nucleotide identity 

and 94% genomic nucleotide identity with each other. Their intron: exon 

boundaries were conserved. 

Hc-cyp-tag41+55+70+9 represented a C. elegans cyp42a1 homologue (see Section 

4.7.2.1). An additional contig, Hc-cyp-tag61, encoded an identical 122 amino 

acid N-terminus to Hc-cyp-tag41. The coding sequence shared 98% nucleotide 

identity with Hc-cyp-tag41, but the genomic sequence was only 72% identical. 

Two H. contortus contigs, Hc-cyp-tag4+77 and Hc-cyp-tag11+3, encoded 

sequence with most identity to C. elegans single-family member cyp43a1. The 

conceptual translations of the parasite CYP tags differed by 13 amino acid 

substitutions. The gene is of unknown function in C. elegans. 

cyp44a1 is the only mitochondrial CYP in C. elegans. Hc-cyp-tag31, Hc-cyp-tag75 

and Hc-cyp-tag76 encoded 83, 92 and 92 amino acids of the C-terminus 

respectively. The conceptual translations of Hc-cyp-tag31 and Hc-cyp-tag76 

shared 100% amino acid identity and Hc-cyp-tag75 differed by one amino acid. 

They all shared 92-98% coding nucleotide identity, 94-97% genomic nucleotide 

identity and conserved intron: exon boundaries. Only one tag, Hc-cyp-tag83, 

encoded a homologous N-terminus to CYP44A1 (see Section 4.7.1.2). 

4.5.2 Clustered genes 

Expansion by gene duplication is common in CYP family evolution (Baldwin et al 

2009, Nelson et al 1993, Thomas 2006, Tijet et al 2001) and as described by 

Thomas (2006) may play a role in adaptive evolution in the face of xenobiotic 

challenge. The extent of CYP family clustering in the C. elegans genome is 
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shown in Figure 4-5. As can be seen, most clusters consist of close family 

members and probably arose by multiple gene duplications. 

A minimum of three genes is required to fit the definition of a cluster. As shown 

in Figure 4-3, in H. contortus the biggest putative cluster was six genes on 

supercontig 5, consisting of Hc-cyp-tag50, Hc-cyp-tag94, Hc-cyp-tag97, Hc-cyp-

tag62, Hc-cyp-tag36 and Hc-cyp-tag35 and there was a putative cluster of three 

CYPs on supercontig 27: Hc-cyp-tag51, Hc-cyp-tag92 and Hc-cyp-tag93. Two 

additional supercontigs, 6 and 8, each encoded three consecutive CYP tags, but 

for both supercontigs, two of the tags could potentially assemble into one gene 

as they encoded amino acids in the correct linear order. All 12 of the tags on 

supercontigs 5, 6 and 8 shared most homology with either CYP33 or CYP14 family 

members, which cluster in large arrays in C. elegans. As shown in Figure 4-5, the 

CYP33 genes are clustered on Chromosome IV and Chromosome V in C. elegans, 

while the CYP14 genes cluster on Chromosome X. 

Interestingly, Hc-cyp-tag94, which lies within the biggest putative cluster of 

CYPs identified in the parasite (supercontig 5), was shown to have a higher 

constitutive expression in anthelmintic-resistant MHco10 (CAVR) isolate adults 

relative to the anthelmintic-susceptible MHco3 (ISE) isolate.  

 

4.6 Genes associated with CYP pathways 

4.6.1 Redox partners 

C. elegans emb-8 is thought to encode the orthologue of NADPH-cytochrome 

P450 reductase, a protein that supplies electrons to cytochrome P450 enzymes. 

H. contortus supercontig_0047488 encodes a putative emb-8 orthologue (see 

Figure 4-6). The parasite gene is predicted to encode a product with 69% amino 

acid identity to the C. elegans protein (BLASTp, E=0), although sequence 

potentially encoding ~55 amino acids is missing due to a gap in the supercontig 

assembly. 
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C. elegans emb-8 is a 3002bp, 6 exon gene, encoding a 1989bp mRNA. The H. 

contortus emb-8 homologue is at least 6119bp, with at least 15 exons, based on 

the partial 1824bp mRNA that can be annotated from available sequence.  

In both nematodes, the predicted EMB-8 polypeptide encodes a conserved NADP 

cytochrome P450 reductase (CYPOR) domain, containing all 40 expected residues 

for the associated NADP binding pocket, FAD binding pocket, FAD binding motif, 

phosphate binding motif, beta-alpha-beta structure motif and the four expected 

catalytic residues. 

Based on Illumina transcriptome data, the parasite emb-8 homologue appears to 

be highly expressed in both L3 and adult stages. 

4.6.2 Nuclear Receptors 

The C. elegans genome encodes 284 nuclear receptor (NR) genes, of which three 

have been predicted to reside in the same subfamily as the mammalian PXR and 

CAR proteins known to regulate the expression of xenobiotic-metabolising CYPs: 

daf-12, nhr-8 and nhr-48 (reviewed in Xu et al, 2005).   

When the real-time screen was first designed, the closest matched sequence in 

the H. contortus 12/11/07 contig database to all three C. elegans genes was 

encoded on contig_0015966. A reciprocal BLASTx search of wormpep proved it to 

be most similar to DAF-12 (E=3e-45), as did alignment of the predicted mRNA 

and polypeptide, and primers were designed to amplify this gene in the real-

time screen (Hc-nhr).  

When the 21/08/08 supercontig database was released the following year, 

another tBLASTn search with the three C. elegans NRs of interest revealed 12 

supercontigs encoding sequence with high identity (P<0.005), which facilitated 

identification of the full-length sequence of Hc-nhr, in addition to putative C. 

elegans nhr-8 and nhr-48 homologues. 

Results of the real-time screen showed expression of the daf-12 homologue Hc-

nhr to be higher in the L3 and L4 stages than in the adult parasite, higher in the 

gut than in the soma, and higher in males than females. Similarly, in C. elegans, 
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studies have shown DAF12::GFP to be expressed from embryo to adult, but most 

highly in the larval stages, with peak expression in the L2 stage. Although lower 

in adults, DAF12::GFP expression was widespread, but strongest in the intestine, 

spermatheca and uterus.  

In C. elegans, daf-12 has been shown to be involved in many pathways and plays 

key roles in regulating development and lifespan. Analysis of loss-of-function and 

gain-of-function daf-12 mutants relative to N2 worms showed an increased 

sensitivity in the former and increased resistance in the later to oxidative stress, 

based on survival following exposure to paraquat (Fisher and Lithgow 2006). The 

same study used microarray analysis of the daf-12 mutants to identify a 

relatively small set of differentially expressed genes, which included members of 

the CYP and GST families, although both appeared to be down-regulated in the 

gain-of-function mutant. 

4.7 CYP genes of interest 

4.7.1 CYPs with high constitutive expression in the  susceptible 

isolate 

4.7.1.1 Hc-cyp-1 (Hc-cyp-tag15+25) 

Hc-cyp-1 was the most highly expressed CYP identified in H. contortus adult 

worms. Its characteristic expression profile was unlike the majority of CYP tags 

in showing higher expression in the body than the intestine and higher 

expression in the female than the male (see Chapter 3). 

 

Missing Hc-cyp-1 sequence from 3708 bp to 3807 bp was amplified and sequenced 

from adult worm cDNA (see Figure 4-2A). The conceptual translation of Hc-cyp-1 

shared 57% amino acid identity with CYP31A2 (POD-7) and CYP31A3 (POD-8) in C. 

elegans (see Figure 4-7) and 57% amino acid identity with CBR-CYP-31A3 in C. 

briggsae.  Hc-cyp-tag15 and Hc-cyp-tag25 were the only tags with high identity 

to the C. elegans CYP31A subfamily identified in the H. contortus reference 

sequence databases, so it is likely that this is a single family member CYP in the 

parasite. 
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pod-7 and pod-8 are expressed in gonads, oocytes and embryos and are involved 

in the formation of lipids required for eggshell production (Benenati et al 2009). 

The encoded proteins have been shown to function with the NADPH reductase 

EMB-8, a homologue of which was identified H. contortus and described in 

Section 4.6.1. 

 
 
4.7.1.2 Hc-cyp-2 (Hc-cyp-tag83+73+74+76) 

Hc-cyp-2 was more highly expressed in L3 and L4 larvae than in adults. In the 

latter, it was most highly expressed in females and in the intestine. The closest 

C. elegans CYP was cyp44a1, the only mitochondrial CYP in the model worm. The 

conceptual translation of Hc-cyp-2 shared 54% amino acid identity with the C. 

elegans polypeptide (see Figure 4-8) and with CBR-CYP-44A1 in C. briggsae. Most 

divergence was seen at the N terminus, with only the MRRS motif of the first 

four amino acids conserved.  

Two additional tags encoded 83 amino acids and 92 amino acids of a homologous 

C-terminus. They all shared 92-98% coding nucleotide identity, 94-97% genomic 

nucleotide identity and conserved intron: exon boundaries, but the product 

encoded by Hc-cyp-tag31 shared 100% amino acid identity with HC-CYP-2 while 

the product encoded by Hc-cyp-tag75 differed by one amino acid. These tags 

may represent alleles or paralogues. 

Vertebrate mitochondrial CYPs catalyse steroid, bile and vitamin D synthesis, but 

no function has been ascribed to cyp44a1 in C. elegans or the eight 

mitochondrial CYPs in Drosophila melanogaster (Tijet et al 2001). RNAi of the 

mitochondrial CYP in C. elegans causes no obvious abnormalities (Kamath et al 

2003). 

4.7.2 CYP genes with higher expression in resistant  isolates 

4.7.2.1 Hc-cyp-3 (Hc-cyp-tag41+55+70+9) 
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Hc-cyp-tag41, Hc-cyp-tag55, Hc-cyp-tag70 and Hc-cyp-tag9 represent contiguous 

regions of the same gene, which is homologous with cyp42a1 in C. elegans 

(BLASTx, E=0). Hc-cyp-tag41 showed the most consistent higher expression in the 

ivermectin and benzimidazole-resistant MHco4 (WRS) isolate relative to the 

susceptible MHco3 (ISE) isolate. Hc-cyp-tag55, Hc-cyp-tag70 and Hc-cyp-tag9 did 

not show a consistently higher expression, but this may reflect between-isolate 

polymorphism. 

Missing cDNA sequence between the predicted coding sequences the on Hc-cyp-

tag55 contig and the Hc-cyp-tag70+9 contig was determined by hemi-nested PCR 

amplification followed by direct sequencing (see Figure 4-2B). This additional 

211 bp region of cDNA sequence was completely absent from all H. contortus 

sequence databases, despite clearly representing a region homologous to C. 

elegans CYP42A1 (BLASTx, E=3e-11). An additional tag, Hc-cyp-tag61, encoded 

an identical 122 amino acid N-terminus to Hc-cyp-tag41. The coding sequence 

shared 98% nucleotide identity with Hc-cyp-tag41, but the genomic sequence 

was only 72% identical. 

The full-length 1536 bp Hc-cyp-3 cDNA shared 68% identity to the 1539 nt C. 

elegans cyp42a1 mRNA. The 512 amino acid conceptual translation was 73% 

identical to CYP42A1 in C. elegans (see Figure 4-9), 72% identical to CBR-

CYP42A1 in C. briggsae and 64% identical to XP_001901707.1 in B. malayi 

(BLASTp, E=0 for all). These genes are of unknown function. 

4.7.2.2 Hc-cyp-tag94 

3 to 8 fold higher expression of Hc-cyp-tag94 was recorded in the anthelmintic-

resistant MHco10 (CAVR) isolate relative to the MHco3 (ISE) isolate. 

Hc-cyp-tag94 shares most identity with CYP14A1 in C. elegans (BLASTp, E=2e-

10), which is a gene of unknown function. Nine other H. contortus CYP tags 

share most identity with C. elegans CYP14A family members, but only Hc-cyp-

tag94 showed higher expression in the real-time screen. 

Hc-cyp-tag94 lies within the biggest putative cluster of CYPs identified in the 

parasite (see Figure 4-3). 



  102  

4.8 Tables and Figures -joini  
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B

C

Figure 4-1: Neighbour-joining tree of C. elegans
CYP polypeptides. The evolutionary history was 
inferred using the Neighbor-Joining method 
(Saitou et al., 1987). The optimal tree with the 
sum of branch length = 21.52513544 is shown. 
The percentage of replicate trees in which the 
associated taxa clustered together in the 
bootstrap test (2000 replicates) are shown next 
to the branches (Felsenstein, 1985). The tree is 
drawn to scale, with branch lengths in the same 
units as those of the evolutionary distances used 
to infer the phylogenetic tree. The evolutionary 
distances were computed using the Poisson 
correction method (Zuckerkandl and Pauling, 
1965) and are in the units of the number of 
amino acid substitutions per site. All positions 
containing gaps and missing data were 
eliminated from the dataset (Complete deletion 
option). There were a total of 143 positions in 
the final dataset. Phylogenetic analyses were 
conducted in MEGA4 (Tamura et al., 2007). 
A, B and C relate to clades described by Gotoh 
(1998). CYP44A1 is the only mitochondrial CYP 
in C. elegans. 
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Figure 4.2: RT-PCR amplification between CYP tags 
A: RT-PCR product amplified from adult worm cDNA with Hc-cyp-tag25F and Hc-cyp-tag15R 
primers. This product was sequenced to reveal 99 bp coding sequence missing due to a gap 
in the supercontig assembly, showing both tags represented the same gene, Hc-cyp-1. 
B: Hemi-nested RT-PCR amplifications from adult worm cDNA. No products were visualized 
on a gel after one round of RT-PCR amplification with Hc-cyp-tag41F + Hc-cyp-tag9R or Hc-
cyp-tag70R primers (data not shown). A second round of hemi-nested RT-PCR amplified the 
expected products (shown above), demonstrating Hc-cyp-tag41, Hc-cyp-tag55, Hc-cyp-tag9 
and Hc-cyp-tag70 represent the same gene, Hc-cyp-3. The product of lane 3 was sequenced 
to reveal 211 bp of coding sequence missing from reference databases.  
1= Hc-cyp-tag41F + Hc-cyp-tag9R product as template for Hc-cyp-tag41F + Hc-cyp-tag55R 
2= Hc-cyp-tag41F + Hc-cyp-tag70R product as template for Hc-cyp-tag41F + Hc-cyp-tag55R 
3= Hc-cyp-tag41F + Hc-cyp-tag70R product as template for Hc-cyp-tag55F + Hc-cyp-tag9R 
4= Hc-cyp-tag41F + Hc-cyp-tag70R product as template for Hc-cyp-tag41F + Hc-cyp-tag41R



     

SUPERCONTIG HC-CYP-TAG REGION (amino acids) CLOSEST C. elegans CYP

1 54 2-87 14A3
2 42 15-87 14A5
3 63 2-148 14A3
4 46 28-84 14A5
5 50_94_97_62_36_35 425-426,115-191,293-421,293-423,374-461,1-95 33C7,14A5,33C2,33C9,14A2,14A5
6 60+34_33_49+30 169-461, 115-190, 289-425 14A5, 14A4, 33C1
7 32_68+69 1-90, 285-462 14A3, 33C6
8 91_39+38_37 1-28, 3-187, 226-390 33E1, 33C9, 33C5
9 95_56 360-425, 291-370 33C7, 33E2

10 84 6-141 33C2
11 16 4-470 33C9
12 81 274-288 33C2
13 45 89-143 33C11
14 40 289-359 33C3
15 22+14 11-519 22A1

16+18 65+64+10 1-323 23A1
17 82 75-177 23A1
19 66 68-107 13B1
20 7 434-494 13B1
21 90_19 1-62, 268-304 13B2, 13A12
22 78 459-493 13A12
23 8 303-358 13A12
24 79 303-435 13A8
25 2+6 17-439, 434-494 13A12, 13B1
26 1_ 5 17-305, 433-486 13A12, 13B1
27 51_92_93 207-359, 27-61, 15-107 32A1, 32A1, 13B1
28 20 317-462 32B1
29 44 239-341 32A1
30 89 21-141 32A1
31 86_87 234-325, 470-506 32A1, 37B1
32 80 454-507 37B1
33 53_67 463-507, 142-521 37B1, 32A1
34 25+15 1-508 31A2
35 12+13 22-68, 302-494 13A11, 13A10
36 27 454-507 37B1
37 17+18 1-448 33E2.
38 47+48 61-329 34A4
39 57 150-194 34A7
40 43 167-329 34A8
41 71+72 28-453 34A3
42 24+23+52 27-469 34A9
43 28 24-147 34A4
44 26 104-137 36A1
45 59+58 140-500 36A1
46 88 325-493 36A1
47 29 38-136 36A1
48 21_96 288-457, 419-506 37A1 

49+51+52 41+55+9+70 1-512 42A1
50 61 1-122 42A1

53+54 4+77 1-467 43A1
55 11+3 48-467 43A1
57 31 403-439 44A1
59 76 399-481 44A1

56+58+60+61 83+73+74+76+85 1-480 44A1

462

 

Figure 4.3: Schematic of 73 partial CYP sequences a ssembled from 97 CYP tags. Rows represent supercont igs and columns represent full-
length genes. Coloured regions show the proportion of the gene represented by each partial CYP, colour  relates to the clade of the closest C. 
elegans CYP (see Figure 4-1): red=clade A, green=clade B, blue=clade C. Tags numbers with a “+” between them represent the same gene.
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P u ta tive  fa m ily  H C -C Y P -T A G  R e g io n  o f p o lyp e p tid e  (a m in o  a c id s )  C . e le g a n s  h o m o lo g u e  Id e n tity  w ith  h o m o lo g u e  
C Y P 13  1 3  3 0 2 -4 9 4  1 3A 1 0    

  1 2  2 2 -6 8  1 3A 1 1    
  1  1 -3 0 5  1 3A 1 2  4 4 %  
  2 + 6  1 -4 9 4  1 3A 1 2  4 3 %  
  1 9  2 6 8 -3 0 4  1 3A 1 2    
  8  3 0 3 -3 5 8  1 3A 1 2    
  7 8  4 5 9 -4 9 3  1 3A 1 2    
  7 9  3 0 3 -4 3 5  1 3A 8    
  9 3  1 5 -1 0 7  1 3B 1    
  5  4 3 3 -4 8 6  1 3B 1    
  7  4 3 4 -4 9 4  1 3B 1    
  9 0  .1 -6 2  1 3B 2    

C Y P 14  9 4  1 1 5 -1 9 1  1 4A 1    
  6 2   2 8 7 -4 6 1  1 4A 3    
  3 2  .1 -9 0  1 4A 3    
  6 3  1 -1 4 8  1 4A 3    
  5 4  1 -8 7  1 4A 3    
  3 3  1 1 5 -1 9 0  1 4A 4    
  3 5  .1 -9 5  1 4A 5    
  4 2  1 5 -8 7  1 4A 5    
  60 + 3 4  1 6 9 -4 6 1  1 4A 5  3 4 %  
  4 6  2 8 -8 4  1 4A 5    

C Y P 22  22 + 1 4  1 -5 1 9  2 2 A 1  (d a f-9 ) 3 7 %  
C Y P 23  6 5 + 6 4 + 1 0  1 -5 3 3  2 3A 1  5 2 %  

  8 2  7 5 -1 7 7  2 3A 1    
C Y P 31  25 + 1 5  1 -5 0 8  3 1A 2  5 7 %  
C Y P 32  6 7  1 4 2 -5 2 1  3 2A 1    

  5 1  2 0 7 -3 5 9  3 2A 1    
  8 9  2 1 -1 4 1  3 2A 1    
  8 6  2 3 4 -3 2 5  3 2A 1    
  4 4  2 3 9 -3 4 1  3 2A 1    
  9 2  2 7 -6 1  3 2A 2    
  2 0  3 1 7 -4 6 2  3 2B 1    

C Y P 33  6 6  7 0 -1 0 6  3 3B 1    
  49 + 3 0  2 8 9 -4 2 5  3 3C 1    
  4 5  8 9 -1 4 3  3 3 C 1 1    
  9 7  2 9 3 -4 2 1  3 3C 2    
  8 4  1 -1 4 1  3 3C 2    
  8 1  2 7 4 -2 8 8  3 3C 2    
  4 0  2 8 9 -3 5 9  3 3C 3    
  3 7  2 2 6 -3 9 0  3 3C 5    
  68 + 6 9  2 8 5 -4 6 2  3 3C 6    
  9 5  3 6 0 -4 2 5  3 3C 7    
  5 0  4 2 5 -4 2 6  3 3C 7    
  91 + 1 9  .1 -3 9 0  3 3C 9  5 1 %  
  39 + 3 8  1 -1 8 7  3 3C 9    
  1 6  1 -4 7 0  3 3C 9  4 8 %  
  3 6  3 5 5 -4 6 1  3 3C 9    
  17 + 1 8  1 -4 4 8  3 3E 1 . 4 1 %  
  5 6  2 9 1 -3 7 0  3 3E 2 .   

C Y P 34  2 8  1 -1 4 7  3 4A 4    
  47 + 4 8  1 -3 2 9  3 4A 4    
  5 7  1 5 0 -1 9 4  3 4A 7    
  4 3  1 6 7 -3 2 9  3 4A 8    
  2 4 + 2 3 + 5 2  1 -4 6 9  3 4A 9  3 4 %  

C Y P 35  71 + 7 2  1 -4 5 3  3 5A 4  3 5 %  
C Y P 36  2 6  1 0 4 -1 3 7  3 6A 1    

  2 9  1 -1 6 0  3 6A 1    
  59 + 5 8  1 4 0 -5 0 0  3 6A 1    
  8 8  3 2 5 -4 9 3  3 6A 1    

C Y P 37  2 1  2 8 8 -4 5 7  3 7A 1     
  9 6  4 1 9 -5 0 6  3 7B 1    
  2 7  4 5 4 -5 0 7  3 7B 1    
  8 0  4 5 4 -5 0 7  3 7B 1    
  5 3  4 6 3 -5 0 7  3 7B 1    
  8 7  4 7 0 -5 0 6  3 7B 1    

C Y P 42  6 1  1 -1 2 1  4 2A 1    
  4 1+ 55 + 9 + 7 0  1 -5 0 8  4 2A 2  7 3 %  

C Y P 43  11 + 3  1 -4 6 7  4 3A 1  3 5 %  
  4+ 77  1 -4 9 7  4 3A 1  4 2 %  

C Y P 44  3 1  4 0 3 -4 3 9  4 4A 1    
  7 5  4 1 3 -4 8 2  4 4A 1    
  8 3 + 7 3 + 7 4 + 7 6 + 8 5  1 -4 8 1  4 4A 1   5 4 %  

 

Table 4.1: Grouping of Hc-cyp-tags into putative families based on C. elegans CYP families. 
Identity with homologue shows % amino acid identity between conceptual translations of CYP 
tags encoding >75% gene and the closest C. elegans CYP polypeptide.
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Figure 4-4: Neighbour-joining tree of conceptual 
translations of H. contortus CYP tags and C. 
elegans CYP polypeptides. The evolutionary 
history was inferred using the Neighbor-Joining 
method (Saitou et al., 1987). The optimal tree 
with the sum of branch length = 30.99985086 is 
shown. The percentage of replicate trees in which 
the associated taxa clustered together in the 
bootstrap test (2000 replicates) are shown next to 
the branches (Felsenstein, 1985). The tree is 
drawn to scale, with branch lengths in the same 
units as those of the evolutionary distances used 
to infer the phylogenetic tree. The evolutionary 
distances were computed using the Poisson 
correction method (Zuckerkandl and Pauling, 
1965) and are in the units of the number of amino 
acid substitutions per site. All positions containing 
alignment gaps and missing data were eliminated 
only in pairwise sequence comparisons (Pairwise 
deletion option). There were a total of 710 
positions in the final dataset. Phylogenetic 
analyses were conducted in MEGA4 (Tamura et al.,
2007). C. elegans single family member CYPs are 
highlighted.
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Figure 4.5: Clustering of CYP genes in C. elegans genome 
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A: 
 
EMB-8           MLAWIVSGLDTSDLVVLTLLAGGAIIFLFMKVFNQQP---SSSRYSPTVASVTTSAAASK 57 
HC-0047488      MWDWLVSQLDVTDFIILSALMLGGMYFLVKYRLGGTSRWVSLFRYKPTMTPITPTAKPK- 59 
                *  *:** **.:*:::*: *  *.: **.   :.  .   *  **.**::.:*.:* ..  
 
EMB-8           SNQSFIDRMKNENRQVLIMYGSQTGTAEEMSGRLAKDLTRYTKKAVVVDPEDIECEDLNR 117 
HC-0047488      -DMSFISRMKNENRQVLIMYGSQTGTAEELSGRLAKD----------------------- 95 
                 : ***.**********************:*******                        
 
EMB-8           LSEVEDALLVLCIATYGEGDPTDNAVTLVEYLNAGDCDLSGVRFAVFGLGNKTYEHFNEI 177 
HC-0047488      ---------------------------------------------VFGLGNKTYEHFNAV 110 
                                                             ************* : 
 
EMB-8           GIQMDKQLEKLGAKRIFHLGLGDDDANLEEDFMIWREAFLPKVAEEFGWELNTEAETMRQ 237 
HC-0047488      GKLFDKKLEELGAERAFPLGLGDDDANLEEDFMRWREAFLPTVAQRFGWELNTDAETLRQ 170 
                *  :**:**:***:* * *************** *******.**:.*******:***:** 
 
EMB-8           YQLEPVEEGK--ALFKGEFGRLGAYERPRPPFDVKNPYLATVAINDELHTEHSDRSCRHI 295 
HC-0047488      YRLELVDHNANVTLFKGEYGRLGAFERLRPPFDQKNPFPATIAVNRELHTEKSERSCRHI 230 
                *:** *:..   :*****:*****:** ***** ***: **:*:* *****:*:****** 
 
EMB-8           EFSVEGSRIRYEAGDHLAVFPTNDPVLVDRLINMLQFDPDHAFRLVNVDEDASKRHPFPC 355 
HC-0047488      EFAVEGSRIRYEAGDHLAVFPTNDPELVDAVISLLDFDPEQAFRLINVDEESSKRNPFPC 290 
                **:********************** *** :*.:*:***::****:****::***:**** 
 
EMB-8           PTTFRTALSHYVDICAPVKSHVLKAISEYCTDDTEKEFLNKLSTANEEGLKEYARYIVKE 415 
HC-0047488      PCTYRTALTHYVDICAPLKSHVLKAISEYCSDEKEKAYLQLLSTATEEGLVQYSSYIVKE 350 
                * *:****:********:************:*:.** :*: ****.**** :*: ***** 
 
EMB-8           RRSIVDVLTDQKTCKPPIEYLLELLPRLQARYYSIASSPRLNEEKIAICAVVTKYSIGDR 475 
HC-0047488      RRSIIDVLRAHPSCKPPIEYLLELLPRLQARYYSIASSPKHQENRIAICCIVTKYTIGDR 410 
                ****:***  : :**************************: :*::****.:****:**** 
 
EMB-8           DINGVCTRYLTTKDAGSKSPVFVRKSTMRLPHRTTTQVIMIGPGTGFAPFRGFLQDRQFH 535 
HC-0047488      LIKGVCTNYLAGKDVNDRTPVFVRKSQMRLPHRTNTPVIMIGPGTGFAPFRAFLQERKFQ 470 
                 *:****.**: **...::******* *******.* **************.***:*:*: 
 
EMB-8           KNAGKEIGAMHLYYGCRHPDHDYIYKDELAKFQEDEVLTHLVCAFSRAQEHKIYVQDRLW 595 
HC-0047488      KNQGKEIGPIMLYYGCRHPEHDYIYQDEIEEMVKDGVITDLYCAFSRAQEHKIYVQNRLW 530 
                ** *****.: ********:*****:**: :: :* *:*.* **************:*** 
 
EMB-8           ETRDRIWDAINVGAHVYICGDARNMARDVQATLQKIFREIGGKSETEAVAYFKDMEKTKR 655 
HC-0047488      ESRDKVWSAIEAGAHIYVCGDARNMARDVQNVLLRILQEVGGKSEEESATLFKNLERQRR 590 
                *:**::*.**:.***:*:************ .* :*::*:***** *:.: **::*: :* 
 
EMB-8           YQADVWS 662 
HC-0047488      YQADVWS 597 
                *******  

 
 
B: 

Hc-0047488

Ce-emb-8

1            122     181      274    328                        1326    1374                    1622     2125               2421    2466               2693     

59                 54                                           48                                  503                             45    

1    121     952 1050  1106 1172          1172 1318  1458 1585   1651 1799 1851 1958 2021 2050  2528 2610  2712 2825   2971 3103  3937 4088 4233 4391 4943 5014   5128 5273

831          56                                140          66          52           63          478         102          146          834        145         552         114

NNN

 
 

Figure 4.6: C. elegans EMB-8 and putative H. contortus orthologue HC-0047488 
A: Amino acid alignment of EMB-8 and HC-0047488 polypeptides. B: Schematic of emb-8 and 
Hc-0047488 genes 
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A: 
 
CYP31A2         MGVIIPAVLLAMATVIAWLLYKHLRMRQVLKHLNQPRSYPIVGHGLITKPDPEGFMNQVI 60 
CYP31A3         MGVIIPAVLLASATIIAWLLYKHLRMRQALKHLNQPRSYPIVGHGLVTKPDPEGFMNQVI 60 
HC-CYP-1        MGLLSAFLFVTVVTSIVYFIAKHLQLRNQLKGINCPRSYPLIGHGLLKKPDMEGFINQVM 60 
                **:: . :::: .* *.::: ***::*: ** :* *****::****:.*** ***:***: 
 
CYP31A2         GMGYLYPD-PRMCLLWIGPFPCLMLYSADLVEPIFSSTKHLNKGFAYVLLEPWLGISILT 119 
CYP31A3         GMGYLYPD-PRMCLLWIGPFPCLMLYSADLVEPIFSSTKHLNKGFAYVLLEPWLGISILT 119 
HC-CYP-1        GMAQMYPDSPRMVLFWLGPVPVVMLYSARLVEKILNCSQHLNKGIAYYFFESWLGQGIIT 120 
                **. :*** *** *:*:**.* :***** *** *:..::*****:** ::*.*** .*:* 
 
CYP31A2         SQKEQWRPKRKLLTPTFHYDILKDFLPIFNEQSKILVQKLCCLGADEEVDVLSVITLCTL 179 
CYP31A3         SQKEQWRPKRKLLTPTFHYDILKDFLPIFNEQSKILVQKMCSLGAEEEVDVLSVITLCTL 179 
HC-CYP-1        SNVDNWRPKRKLLTPTFHYDILKDFVPIFNDQAQILVKKFASLPEGYPVELMSYITLCAL 180 
                *: ::********************:****:*::***:*:..*     *:::* ****:* 
 
CYP31A2         DIICETSMGKAIGAQLAENNEYVWAVHTINKLISKRTNNPLMWNSFIYNLTEDGRTHEKC 239 
CYP31A3         DIICETSMGKAIGAQLAENNEYVWAVHTINKLISKRTNNPLMWNSFIYNLTEDGRTHEKC 239 
HC-CYP-1        DIICETSMGKSLNAQLDKESEYVKAVHTVNDLVQKRTKSPLYWNDYFYNKFGEGETEKKC 240 
                **********::.*** ::.*** ****:*.*:.***:.** **.::**   :*.*.:** 
 
CYP31A2         LRILHDFTKKVIVERKEALQENDYKMEGRLAFLDLLLEMVKSGQMDETDVQAEVDTFMFE 299 
CYP31A3         LRILHDFTKKVIVERKEALQENDYKMEGRLAFLDLLLEMVKSGQMDETDVQAEVDTFMFE 299 
HC-CYP-1        IDILHSFTNKVIAERRKELEDRQWRFEGRRAFLDLLLDMANSGQLEASEIQEQVDTLMFA 300 
                : ***.**:***.**:: *::.::::*** *******:*.:***:: :::* :***:**  
 
CYP31A2         GHDTTSTGLMWAIHLLGNHPEVQRKVQAELDEVMGDDEDVTIEHLSRMKYLECALKEALR 359 
CYP31A3         GHDTTSTGLMWAIHLLGNHPEVQRKVQAELDEVMGDDEDVTIEHLSRMKYLECALKEALR 359 
HC-CYP-1        GHDTTSTGSSWALFLFGCYPEIQRKVQEEIDEVLEDSDYILPEHLPRLKYLECCLKESLR 360 
                ********  **:.*:* :**:***** *:***: *.: :  ***.*:*****.***:** 
 
CYP31A2         LFPSVPIITRELSDDQVIGGVNIPKGVTFLLNLYLVHRDPAQWKDPDVFDPDRFLPENSI 419 
CYP31A3         LFPSVPIITRELSDDQVIGGVNIPKGVTFLLNLYLVHRDPSQWKDPDVFDPDRFLPENSI 419 
HC-CYP-1        LCTPVPMIMRKLGADQELEGVTLPKGTQVVLNQYMVHRDPMYWPDPEKFDPDRFLPENCI 420 
                * ..**:* *:*. ** : **.:***. .:** *:*****  * **: **********.* 
 
CYP31A2         GRKSFAFIPFSAGSRNCIGQRFALMEEKVIMAHLLRNFNIKAVELMHEVRPKMEIIVRPV 479 
CYP31A3         ARKSFAFIPFSAGSRNCIGQRFALMEEKVIMAHLLRNFNVKAVELMHEVRPKMEIIVRPV 479 
HC-CYP-1        GRHPFAFIPFSAGSRNCIGQRFGLMEIKVVVSWMLRHFNVTAVQRRCDLKSKIEIILRPQ 480 
                .*:.******************.*** **::: :**:**:.**:   :::.*:***:**  
 
CYP31A2         TPIHMKLTRRRPIVSP------- 495 
CYP31A3         TPIHMKLTRRRPIVSP------- 495 
HC-CYP-1        DGIHVFLEKRRAIADGFRSSLIA 503 
                  **: * :**.*..         
 
 
B: 

1       9 3   1 40                               54 0   5 84   680  72 7 821  87 0                                                       158 4 1 902  19 88 

4 7                                           4 4            47 49                                                    31 8

1       9 3   140                               54 0   584   68 0 7 29 823  87 2                                                       158 6 1 64 2 17 28  

4 7                                           4 4            49 49                                                    5 6

896            5 6           247            7 5            60      12 25          92             7 0                              68            3 16           96

1         93   990 1071  1128 1316   1564 1703   1779 18 72 1933 2028 3254 3319  3412 3534 3 605 3707                             3808      3966    4035 4123  4440 4545 4642 4750

Hc-cyp-1

Ce-cyp31a2

Ce-cyp31a3

 
 
 

Figure 4.7: H. contortus HC-CYP-1 and C. elegans CYP31A2 and CYP31A3 
A: Amino acid alignment of HC-CYP-1, CYP31A2 and CYP31A3 polypeptides. B: Schematic of 
Hc-cyp-1, cyp31a2 and cyp31a3 genes.  
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A:  
 
CYP44A1         MRRSIR---NLAENVEKCPYSPTSS---PNTPPRTFSEIPGPREIPVIGNIGYFKYAVKS 54 
HC-CYP-2        MRRSVVVAASSAKSMLNCPISASTATVEQEIEARPFEEIPGPN--VFERHFGRNRTVFRS 58 
                ****:    . *:.: :** *.:::    :  .*.*.*****.   .  ::*  : ..:* 
 
CYP44A1         DAKTIENYNQHLEEMYKKYGKIVKENLGFGRKYVVHIFDPADVQTVLAADGKTPFIVPLQ 114 
HC-CYP-2        -KRSIANYFQWLVDLHKRYGPIVRVEQGFGRGAVVHVFDPEDARRVFASDGRQPFIVPLQ 117 
                  ::* ** * * :::*:** **: : ****  ***:*** *.: *:*:**: ******* 
 
CYP44A1         ETTQKYREMKGMNPGLGNLNGPEWYRLRSSVQHAMMRPQSVQTYLPFSQIVSNDLVCHVA 174 
HC-CYP-2        ETTQRYRQMKGMNPGLGNLNGDEWYRLRSSVQQVMMRPQAVQKYLPYTNEVAQELVDHVR 177 
                ****:**:************* **********:.*****:**.***::: *:::** **  
 
CYP44A1         DQQKR--FGLVDMQKVAGRWSLESAGQILFEKSLGSLGNRSEWADGLIELNKKIFQLSAK 232 
HC-CYP-2        RESETSTSGEVDVSKIAGRWALESSALTVFEKRIGALTDRIEWADGLVNLNKAIFRLSAV 237 
                 :.:    * **:.*:****:***:.  :*** :*:* :* ******::*** **:***  
 
CYP44A1         MRLGLPIFRLFSTPSWRKMVDLEDQFYSEVDRLMDDALDKLKVNDSDSKDMRFASYLINR 292 
HC-CYP-2        LKFAFPLYQYFPTPKWKKMVELEDRFY--------------RFN-----EMKFASLLINR 278 
                :::.:*::: *.**.*:***:***:**              :.*     :*:*** **** 
 
CYP44A1         KELNRRDVKVILLSMFSDGLSTTAPMLIYNLYNLATHPEALKEIQKEIKEDPASS---KL 349 
HC-CYP-2        KELNVNDVKIILLSMFSDGLSTTAPMLVYNLFNIATHPDVQAEIRDEVNAAVQRNEGWSL 338 
                **** .***:*****************:***:*:****:.  **:.*::     .   .* 
 
CYP44A1         TFLRACIKETFRMFPIGTEVSRVTQKNLILSGYEVPAGTAVDINTNVLMRHEVLFSDSPR 409 
HC-CYP-2        PLLRACIKETFRLFPIGTEISRIPQKDIVLSNYHIPAGTPVDINTNVLMRSPTLFND-PL 397 
                .:**********:******:**:.**:::**.*.:****.**********  .**.* *  
 
CYP44A1         EFKPQRWLE---KSKEVHPFAYLPFGFGPRMCAGRRFAEQDLLTSLAKLCGNYDIRHRGD 466 
HC-CYP-2        AFQPSRWLRDVSRQQDFHPFAFLPFGFGPRMCAGRRFAEQDLQVALCRLLQHYRIVHQHG 457 
                 *:*.***.   :.::.****:******************** .:*.:*  :* * *: . 
 
CYP44A1         PITQIYETLLLPRGDCTFEFKKL 489 
HC-CYP-2        SIEQTYETLLLPKGYCEFRFEPL 480 
                .* * *******:* * *.*: * 
  
B: 
 

Hc-cyp-2

Ce-cyp44a1

1    1 63   224  343  389  503   55 1  62 2   666                  8 90   935  1078  112 9 123 1  1 279                  15 32 1578                  1851

61           46            48             4 4              45            51             4 8        4 6

1     172    23 0  35 0   3 50    46 6   10 49 1 121  1214 1322  138 9 141 2 147 8 156 6 167 1 177 3  2 023 2 134  4107 4259  425 9 4389    4 481 4633 

58              N              583              93  67            66             105           250       1973             N                92

 

Figure 4.8: H. contortus HC-CYP-2 and C. elegans CYP44A1 
A: Amino acid alignment of HC-CYP-2 and CYP44A1 polypeptides. B: Schematic of Hc-cyp-2 
and cyp44a1 genes 
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A:  
CYP42A1         MGIITASLIVLTITWIIHFAFRKAKFIYNKLTVFQGPAALPLIGNFHQFHFSPEEFFEQS 60 
HC-CYP-3        MGLVAIALAISVFTWITNFIYKKAKYIFDRIAVFQGPVALPFIGNLHQFHFTPEEFFEQA 60 
                **::: :* : .:*** :* ::***:*:::::*****.***:***:*****:*******: 
 
CYP42A1         QGIAYMMRKGDERITRVWLGGLPFVLLYGAHEVEAILGSPKMLNKPFLYGFLSAWIGDGL 120 
HC-CYP-3        QGLAYMLRKNRDRMTRVWFGPLPYVLIYGPEECEAVLGSSKMLNKTMQYSFLSAWIGEGL 120 
                **:***:**. :*:****:* **:**:**..* **:***.*****.: *.*******:** 
 
CYP42A1         LISKPDKWRPRRKLLTPTFHYDILKDFVEVYNRHGRTLLSKFEAQAGTGEYSDVFHTITL 180 
HC-CYP-3        LISKPDKWRPRRKLLTPTFHYEILKDFVEVYNRHGRTLLGKFLKHAEDGQYENIFHTVTL 180 
                *********************:*****************.**  :*  *:*.::***:** 
 
CYP42A1         CTLDVICEAALGTSINAQKDPHSPYLDAVFKMKDIVFQRLLRPHYFSDTIFNLIGPGKEH 240 
HC-CYP-3        CTLDVICEAALGICLDVQKNPHSPYLDSVFKMKVLIQKRLVKPQYYPEFLFNLFGAGREQ 240 
                ************ .::.**:*******:***** :: :**::*:*:.: :***:*.*:*: 
 
CYP42A1         DECVKILHEFTSKAIYARKAKVDAAGGVEQLLAQETAEGRRRMAFLDLMLDMNSKGELPM 300 
HC-CYP-3        ARCVKILHEFTGNVIRARKAKADAAGGVEKLLAQESAEGRRRMAFLDLMLDMNAKGELPM 300 
                 .*********.:.* *****.*******:*****:*****************:****** 
 
CYP42A1         EGICEEVDTFTFEGHDTTSAAMNWFLHLMGANPEIQSKVQKEIDEVLGEADRPVSYEDLG 360 
HC-CYP-3        DGVQEEVDTFTFEGHDTTSASINWFLHLMGANPDIQEKVQREVDEVLGEVDRPVTYEDLG 360 
                :*: ****************::***********:**.***:*:******.****:***** 
 
CYP42A1         KLKYLEACFKETLRLYPSVPLIARQCVEDIQVRGHTLPSGTAVVMVPSMVHKDPRYWDDP 420 
HC-CYP-3        GLKYLEACIKETLRLYPSVPLIARQTVEDIKIKDHVLPSGTGVVVVPSMVHRDPNYWDDP 420 
                 *******:**************** ****:::.*.*****.**:******:**.***** 
 
CYP42A1         EIFNPERFITGELKHPYAYIPFSAGSRNCIGMRFAMMEEKCILAIILKNLKVKAKLRTDE 480 
HC-CYP-3        EVFRPERFIDGELKHPYAYIPFSAGSRNCIGQRFAMMEEKCILALLMRHLRVRSLLRTDE 480 
                *:*.***** ********************* ************:::::*:*:: ***** 
 
CYP42A1         MRVAAELIIRPLYGNELKFEKREFGDYTSIY- 511 
HC-CYP-3        MRVAAELIIRPLHGNRIKFEKRAYGDYTHCSP 512 
                                       ************:**.:***** :****     

 
 
 
B: 

Hc-cyp-3

Ce-cyp42a1

1                                368      147 3                  183 9      22 62           2 466     4 033                  44 43     5608              5792

1337                                 42 3                         1567                                1165

1       163      357   408      466    593       593    672     821      1000                             1211   1331    1430  1526  25458  25633  25987  26172   

194              58               N              1 49         99            239 32          35 4

 
 

Figure 4.9: H. contortus HC-CYP-3 and C. elegans CYP42A1 
A: Amino acid alignment of HC-CYP-3 and CYP42A1 polypeptides. B: Schematic of Hc-cyp-3 
and cyp42a1 genes 
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4.9 Discussion 

This project identified 73 partial CYP genes in the incomplete H. contortus 

genome. A number of these sequences may assemble into a smaller number of 

full-length genes and conversely, if a significant proportion of genome sequence 

is missing from the reference databases, the number of CYPs could increase. 

However, the findings that over 95% of the available H. contortus ~6000 single 

cluster ESTs can be identified in the genomic databases suggest coverage is good 

(pers. com. Dr G Saunders).  

These findings are supported by the identification of at least one homologous H. 

contortus CYP tag for all single family member CYPs in C. elegans, which are 

predicted to be conserved between species. One caveat would be the possibility 

that current genome assembly algorithms might assemble reads from single 

family member CYP genes more easily than multi-member CYP families 

containing related genes with high nucleotide identity, which would remain in 

the unassembled reads databases. This project was based only on sequences 

from the contig and supercontig databases because they were more amenable to 

study than the read databases, which at 600-800 bp were prohibitively short for 

further analysis. 

In most cases, even the H. contortus supercontigs were too short to encode full-

length CYP genes, with the majority encoding less than 20% of the mRNA. One of 

the main challenges for the assembly of these partial genes was distinguishing 

alleles from subfamily members. CYP families in other species are known to 

expand via multiple gene duplications, generating new members with conserved 

intron: exon boundaries and with high shared sequence identity even at the 

genomic level (Gotoh 1998, Thomas 2007, Tijet et al 2001). In the unassembled 

H. contortus genome this created a jigsaw with extra pieces, missing pieces, and 

pieces that would fit in multiple combinations (guided by a picture from a 

different puzzle). However, 75-100% of the sequences of 15 CYP genes were 

assembled. 
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Pseudogenes and detritus exons provide an additional challenge to assembly of 

the family. As pseudogenes are predominantly duplicated genes rather than 

retrotransposed genes (Nelson et al 2004), pseudogenes and detritus exons 

sharing high identity with their relatives may be present within CYP clusters. 

This is especially problematic for assembling the H. contortus CYP family as the 

majority of CYPs within a cluster are currently only partial sequences, due to 

gaps in the supercontig assembly.  

Expression data generated with this project was found to be of limited value for 

the detection of pseudogenes. The low constitutive expression of a number of 

functional CYP genes and their stage specificity (see Chapter 3) suggests the lack 

of ability to detect expression of a CYP with RT-PCR or RNA-seq does not 

necessarily prove a lack of expression. Also, the high sequence identity of tags 

representing closely related family members means that hypothetically, primers 

designed against the genomic sequence of a pseudogene could amplify the 

transcript of an expressed CYP and conversely, transcriptome reads generated by 

an expressed CYP could map to a pseudogene. 

The clustering of CYPs identified at the Hc-cyp-tag-94 locus is of interest due to 

the higher constitutive expression of the gene in the anthelmintic-resistant 

MHco10 (CAVR) isolate. In a study of ten vertebrate genomes, Thomas (2007) 

found nearly all CYPs with known xenobiotic substrates were found in gene 

clusters, so clustering at the Hc-cyp-94 locus would be consistent with the 

presence of xenobiotic response genes. In C. elegans, the closest CYPs to all of 

the clustered parasite genes are CYP14 and CYP33 family members, which also 

cluster in large arrays in C. elegans. Of these, cyp14a3, cyp33c2 and cyp33e1 

have been predicted in other studies to be orthologues of human xenobiotic 

inducible genes cyp1a2, cyp2e1 and cyp2c19, and are also induced in C. elegans 

on exposure to a range of xenobiotics (Chakrapani et al 2008, Menzel et al 

2001).  

This work also identified putative orthologues of the C. elegans nuclear hormone 

receptor daf-12 and the cytochrome P450 reductase in H. contortus, suggesting 

key pathways in CYP transcription and electron transfer may be conserved 

between the species. This in turn highlights the likely possibility that H. 
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contortus may utilise the full range of biotransformation pathways and 

xenobiotic responses known in insects and mammals. 

4.10 Conclusion 

The H. contortus genome encodes a large number of CYP genes. The 97 partial 

CYP genes identified in the contig and supercontig databases have been 

assembled into 73 larger sequences, of which 15 encode 75-100% of a CYP gene.  

A number of full length H. contortus CYP genes share high identity with CYPs in 

C. elegans (up to 73% amino acid identity of conceptual translations) and life 

stage, tissue and sex specific expression data supports their classification as 

putative orthologues. 

It is hoped that improvements in sequencing technology and assembly algorithms 

will allow completion of the H. contortus genome in the near future. This will 

allow identification of the full complement of H. contortus CYP genes, and 

facilitate more powerful comparative analysis with CYPs in other species. 

Homologues of xenobiotic metabolising CYPs in humans and C. elegans will be of 

particular interest for research into parasite drug metabolism and resistance, as 

will any CYP families that have undergone recent expansion in the parasite. It is 

hoped, however, that this work provides a valuable platform for further study of 

the H. contortus CYP family.
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5 A transcriptomic approach to gene annotation in 

H. contortus 

 

5.1 Introduction 

The completed C. elegans genome has proven to be a powerful resource for 

nematode gene annotation. The degree of conservation between H. contortus 

and C. elegans at a gene, contig and genome level was investigated and the 

impact of findings on the future assembly and annotation of the H. contortus 

genome, and thus CYP family, was investigated. To date, comparative genetics 

with C. elegans has been successfully applied to the global annotation of C. 

briggsae, P. pacificus and B. malayi genomes (Stein et al 2003, Dieterich et al 

2008, Ghedin et al 2003) in addition to a plethora of studies investigating 

individual genes or gene families in a multitude of species.  

 

Analysis of expressed sequence tag (EST) data by Parkinson et al (2004) found 

~65% of H. contortus genes had significant similarity to proteins in C. elegans, 

indicating a substantial degree of conservation at the polypeptide level. 

However, the degree of conservation at gene level e.g. intron size, intron 

number, is unknown, and such factors could greatly affect the ability of gene 

prediction software to accurately detect parasite genes, if based solely on model 

worm parameters. The same study also found that ~19% of H. contortus genes 

lacked similarity to known genes in any species, highlighting the need for 

species-specific data. 

Until recently, EST analysis and tiling microarrays were the most viable species-

specific whole genome approaches for gene discovery. However, both are 

expensive, time-consuming and require a large amount of starting RNA. They 

also have their own approach-specific limitations such as cloning bias in EST data 

and cross-hybridisation in microarrays (Marguerat and Bahler 2010, Mortazavi et 

al 2008, Wang et al 2009). 
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An alternative approach became available with the advent of next generation 

sequencing (NGS) technologies. Illumina, Roche 454 and AB SOLiD platforms can 

be used to directly sequence expressed transcripts, with the resulting high depth 

of short reads aligned against reference sequence to guide annotation, in a 

technique known as ‘RNA-seq’ (Nagalakshmi et al 2010). Similarly to EST and 

tiling microarray analysis, RNA-seq can also be used to measure gene expression.   

 

All NGS platforms are based upon the sequencing of DNA fragments in parallel, 

producing large numbers of short reads (Marguerat and Bahler 2010). Illumina 

sequencing involves the attachment of short fragments of cDNA to a glass 

surface, the flow cell. This binding is facilitated by the hybridisation of oligo-

adapters attached to the DNA fragments with complementary oligos covalently 

bonded to the interior surface of the cell. PCR amplification of the DNA 

fragments then generates high-density clusters to be sequenced by synthesis. 

Polymerase is added with four differentially labelled dNTPs with reversible 3’ 

terminators, to ensure only a single base is incorporated per cycle. After each 

cycle, the fluorescing reaction is imaged to identify the newly incorporated 

base, before the 3’ terminators are chemically removed allowing the next dNTP 

to be added to the sequence (Fox et al 2009, Mardis 2008). 

 

The resulting large raw image files are then processed to extract numerical 

signals for every synthesis event, which are used for base calling. The resulting 

data files consist of lists of sequences, with their base call qualities, which can 

be filtered and directly mapped to a reference genome or assembled into 

contigs (Marguerat and Bahler 2010, Wang et al 2009). 

 

Although RNA-seq avoids many of the issues affecting the former approaches it 

does have its own limitations. One issue is read coverage for rare transcripts. In 

general, larger genomes have more complex transcriptomes that require greater 

sequencing depth, but as coverage tends to reach a plateau (despite increasing 

depth), this becomes a law of diminishing returns (Wang et al 2009). The use of 

normalised cDNA samples or libraries differing in their expression profiles, may 

prove more effective than doubling the depth of sequencing. 
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Another consideration is that reads may map equally well to a number of loci, 

which can be especially problematic for genomes containing large families of 

paralogous genes or for internally repeated domains between genes (Mortazavi 

et al 2008). However, the availability of paired-end sequencing, increased read 

length and better mapping algorithms has already improved the situation.  

 

This technology is evolving rapidly. The Illumina Genome Analyser can now 

produce reads of more than 100 bp length. One run currently takes 2-9.5 days 

(depending on read length; from 35-100 bp) and produces 1.5-2.1 Gb sequence 

per day (http://www.illumina.com). This in itself creates new informatic 

challenges for the storage, retrieval and processing of large amounts of data 

(Wang et al 2009), although compressed data formats and new processing 

software are being developed apace to address this problem (Li et al 2009). 

 

The aim of this project was to use Illumina technology to sequence the H. 

contortus transcriptome and use RNA-seq to annotate the largest region of 

contiguous genomic sequence currently available. Conservation between H. 

contortus and C. elegans at a gene, contig and genome level was investigated 

and the impact of findings on the future assembly and annotation of the H. 

contortus genome were assessed. 

 

5.2 Results 

Illumina technology was used to sequence the transcriptome of the adult H. 

contortus MHco3 (ISE) isolate. 21 million 52 bp reads were generated and 

mapped onto 409 Kb of contiguous genomic sequence, assembled as the 

consensus of five overlapping BAC insert sequences: haemapobac13c1, 

haemapobac7n11, haembac15g16, haembac18h7 and haembac18g2, derived 

from the X chromosome (Redman et al 2008a), and a database of 22 BAC insert 

sequences. Reads were mapped using the algorithms ‘Mapping and Assembly 

with Qualities’ (MAQ) and ‘Sequence Search and Alignment by Hashing 

Algorithm’ (SSAHA) and viewed as read plots over genomic sequence in Artemis 

(Li et al 2008, Ning et al 2001, Rutherford et al 2000).  
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Later, with improvements in both sequencing technology and downstream 

analysis, 38 million and 19 million 76 bp reads were generated from Illumina 

sequencing runs of adult and L3 MHco3 (ISE) cDNA libraries respectively. These 

were mapped with ‘Burrows-Wheeler Aligner’ (BWA) algorithms, opened as BAM 

files directly in Artemis, and viewed as stacked paired reads over genomic 

sequence as shown in Figure 5.1 (Carver et al 2010, Li and Durbin 2009). 

The 409 Kb contig and a 181 Kb BAC insert sequence, BH4E20, were annotated 

guided by the alignment of reads over transcribed regions. Gene prediction 

software and BLASTx homology were used to guide annotation of loci mapped by 

too few reads to confidently predict splice sites with transcriptome data alone.  

Conserved synteny was assessed by aligning the H. contortus 409 Kb contig and 

BAC insert with C. elegans chromosome X and chromosome I respectively, with 

the Artemis Comparison Tool (ACT) (Abbott et al 2005, Carver et al 2005). 

 

Genes were named ‘hc’ for H. contortus, followed by an identifier for the BAC 

insert they were located on, followed by a number e.g. hc-bh4e20-1. 

 

5.2.1 Gene Annotation 

53 transcripts were identified. 37 were coding sequences mapped with 

transcriptome data: 16 transcripts on the X chromosome fragment and 21 

transcripts on BH4E20. An additional 14 coding sequences with a low coverage of 

mapped reads were predicted on the X chromosome fragment with the gene 

prediction software Genefinder. One β-tubulin gene, hc-18h7-1, was annotated 

from sequenced cDNA (pers. com. Dr G Saunders) and gene hc-18h7-3 was 

retrospectively identified within a region of conserved microsynteny. 12 of the 

53 transcripts were identified as mobile elements, so were excluded from the 

analysis, resulting in a total of 41 putative protein-coding genes. 

 

All H. contortus genes annotated in this study had an ATG start codon, 5′-GT/AG-

3′ intron boundaries, and a TAG, TAA or TGA terminal stop codon. In total, the 

590 Kb genomic sequence studied had a GC content of 43%, with a 47.6% and 

46.3% GC content for the identified coding sequence in the X chromosome 

fragment and BH4E20 respectively. These figures were slightly higher than the C. 
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elegans genome GC content of 35.4% and exon GC content of 42.7% (The C. 

elegans Sequencing Consortium 1998, Stein et al 2003).  

 

5.2.2 Gene Density 

41 putative genes were identified in a total of 590 Kb genomic sequence, which 

is a density of one gene per 14.39 Kb. The genome average for C. elegans is one 

gene per 5 Kb (The C. elegans Sequencing Consortium, 1998). 

 

23 of these transcripts were identified on the 409 Kb contig, which is a density 

of one gene per 17.78 Kb. The average gene density on the X chromosome in C. 

elegans is one gene per 6.54 Kb (The C. elegans Sequencing Consortium, 1998). 

 

18 transcripts were identified on the 181 Kb BAC insert, which is a density of one 

gene per 10.05 Kb, relative to a C. elegans average of one gene per 4.77-5.06 Kb 

on chromosome I, the range reflecting a higher density in the central cluster 

region than in the arms (The C. elegans Sequencing Consortium, 1998).  

 

5.2.3 Similarities to Known Proteins 

The conceptual translations of 22 transcripts shared highest identity with C. 

elegans proteins, eleven transcripts with C. briggsae predicted proteins and 

three with Brugia malayi proteins, based on current NCBI databases. The 

conceptual translations of three transcripts shared most identity to proteins 

outside Nematoda. One transcript, hc-bh4e20-1, predicted to encode a P-

glycoprotein (PGP) shared most identity with a published H. contortus PGP 

polypeptide, but was also highly similar to C. elegans PGP-2. 

 

Homologous proteins (BLASTp, E>1e-10) were identifiable in C. elegans for all 

three predicted polypeptides with most identity to B. malayi proteins. For the 

three genes with a closest match outside Nematoda, two encoded proteins that 

were highly conserved in many species (hc-13c1-3 encoded a putative RNA-

binding protein and hc-bh4e20-15 encoded a putative high mobility group 

protein) and both had homology (BLASTp, E>1e-10) to proteins in C. elegans. The 

third gene, hc-13c1-2, encoded a conserved F-box domain yet shared little 
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identity with any sequence in NCBI databases, the best BLASTp hit (only E=0.023) 

being an S-phase kinase in Xenopus tropicalis.  

5.2.4 Conserved domain analysis 

The predicted polypeptides encoded by 27 of the 41 predicted genes had 

conserved domains identifiable in NCBI and Pfam online databases. Seven of the 

predicted polypeptides contained at least one incomplete conserved domain, 

although the closest matching proteins in C. elegans for two of these, one of 

which has been confirmed by cDNA sequencing, also had incomplete conserved 

domains.  

 

5.2.5 Comparison of H. contortus and C. elegans putative 

orthologues 

To assess the extent of conservation of gene structure between H. contortus and 

C. elegans, a subset of putative orthologues of C. elegans genes were identified 

in the annotated parasite sequence. 

The inherent risk in inferring an orthologous or paralogous relationship between 

C. elegans genes and those from the incomplete H. contortus genome is that 

closer relatives may be identified when the parasite genome is fully sequenced. 

With this caveat in mind, a conservative subset of 24 genes was identified in the 

parasite with significant homology to C. elegans genes; the predicted 

polypeptide encoded by each putative orthologue had greater than 45% amino 

acid identity to a C. elegans protein, over greater than 80% of its length, and no 

sequence with higher identity to the C. elegans protein was present in the H. 

contortus contig databases. Two neighbouring genes on the X chromosome 

fragment, hc-13c1-5 and hc-13c1-4, were both homologous with C. elegans folt-

1, so for the purposes of this study were considered as an orthologue (50% amino 

acid identity) and a paralogue (48% amino acid identity) respectively. hc-13c1-4 

was excluded from the subset of orthologues and this proposed gene duplication 

is discussed in more detail later. Three genes were included in the subset of 

orthologues due to conserved microsynteny, although their amino acid identity 

was below the arbitrary cut-off. Gene hc-18h7-3 lies within the second intron of 
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gene hc-18h7-2 on the complementary strand, an identical relationship to their 

closest matched genes, zk154.1 and zk154.4, in C. elegans (see Figure 5.2). 

Gene hc-bh4e20-6 lies on the same strand and directly upstream of the 

orthologue of C. elegans ath-1, and shares most homology with k04g2.11, the 

corresponding upstream gene in C. elegans (see Figure 5.3). 

 

This conservative subset of 24 genes was used in the following H. contortus to C. 

elegans gene comparison (see Table 5.1). 

 

5.2.6 Gene size 

The parasite genes had a similar spliced transcript size to their homologues in C. 

elegans, but unspliced transcript size was invariably larger, which was a function 

of both a greater number of introns and a larger intron size in H. contortus (see 

Table 5.1) Average unspliced transcript length was 5.72 Kb (median 4.84 Kb) 

compared to an average of 2.74 Kb (median 1.85 Kb) for the homologous gene 

set in C. elegans, with an average of 2.5 Kb (median 1.91 Kb) in the C. elegans 

genome (Duret and Mouchiroud 1999, Stein et al 2003). Predicted UTRs were 

excluded in the above calculations and any transcribed sequence (e.g. putative 

transposable elements) located within an intron of an H. contortus gene was 

subtracted from the unspliced transcript size. 

 

The average number of introns was 8.83 per gene (median 7.5) in H. contortus 

compared to an average of 5.25 introns per gene (median 4) in the C. elegans 

homologues, with a genome average of 4 per gene (median 5) in the model worm 

(Deutsch and Long 1999, Stein et al 2003). 

 

The average intron size in this H. contortus subset was 517 bp compared to an 

average intron size of 360 bp in the C. elegans homologues. The genome average 

intron size for C. elegans is 466.6 bp, although this is skewed by a small number 

of very large introns, giving a more representative median of 65 bp (Deutsch and 

Long 1999, Spieth and Lawson 2006). The average for C. elegans in this subset 

was inflated by a large first intron in gene m60.4, which is conserved in the 

orthologous gene, hc-18g2-4, in H. contortus (see Figure 5.2). As might be 

expected, the second intron in this gene was significantly larger in H. contortus 
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(799 bp compared to 57 bp), although the third intron was similarly sized in both 

nematodes. The H. contortus gene has gained an additional 4th intron. 

 

5.2.7 Synteny/Colinearity 

A previous study showed the 409 Kb contig was syntenic with the C. elegans X 

chromosome based on inheritance of a panel of six microsatellites along the 

fragment (homozygous in all males) and the comparison of predicted H. 

contortus gene loci with C. elegans proteins using a BLASTx search (Redman et 

al 2008a).  

 

This work supports these findings. 12 of the subset of 24 C. elegans orthologues 

were on the 409Kb contig; ten of these shared most identity to C. elegans 

proteins encoded by genes on the X chromosome, and the remaining two were 

homologous to genes on chromosome V (see Figure 5.2). A region of conserved 

microsynteny was apparent between genes hc-18h7-1, hc-18h7-2 and hc-18h7-3 

in H. contortus and mec-7, zk154.1 and zk154.4 on the X chromosome in C. 

elegans.  

 

On contig BH4E20, 11 of the predicted polypeptides were homologous to C. 

elegans proteins encoded on chromosome I and one, HC-BH4E20-11, was 

homologous to a protein encoded on chromosome III (see Figure 5.3). Again, 

regions of microsynteny were apparent: H. contortus genes hc-bh4e20-8 and hc-

bh4e20-9 had a conserved relationship relative to the orthologous C. elegans 

genes y54e10br.1 and arx-7; as did H. contortus genes hc-bh4e20-12, hc-bh4e20-

13 and hc-bh4e20-14 to C. elegans genes dylt-1, ttx-7 and f13g3.6; and H. 

contortus genes hc-bh4e20-5 and hc-bh4e20-6 to C. elegans genes ath-1 and 

k04g2.11. 

 

5.2.8 BAC end analysis 

To investigate whole genome synteny between H. contortus and C. elegans, a 

survey of BAC ends was undertaken. The BAC end database contains 20,828 

sequences of an average of 760 bp, corresponding to each end of 10,414 BAC 

inserts. This dataset was used for a BLASTx search of C. elegans Wormpep. The 
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locus of the best-matched C. elegans gene for every hit with P<0.01 was 

recorded, before matching up each BAC end with its mate pair and comparing 

putative homologue loci.  

233 BAC inserts had matches to C. elegans proteins at both ends using these 

criteria. 118 pairs (50.64%) of BAC ends hit C. elegans genes on the same 

chromosome. C. elegans has six chromosomes, so if linkage had been random, 1 

in 6 pairs (16.67%) would be expected to have hit the same chromosome. 

Although the BLASTx matches cannot be claimed to represent orthologous pairs, 

a random selection of genes would not be expected to yield a higher linkage 

estimate. This suggests there is a high degree of chromosomal synteny between 

H. contortus and C. elegans genomes. 

5.2.9 Trans-splicing  

5.2.9.1 Alternative splicing 

Gene hc-bh4e20-1a encodes a full-length P-glycoprotein, with homology to C. 

elegans PGP-2. A truncated gene encoding a 794 amino acid polypeptide, with 

99% amino acid identity to the C terminus of HC-BH4E20-1A, lies 4.05 Kb 

downstream of the 3’ end of the full-length P-glycoprotein. This truncated gene, 

hc-bh4e20-1b, is thought to represent an alternate splice variant of hc-bh4e20-

1a. Transcriptome reads mapped to sequence with homology to a mariner 

transposase within the 9th intron of hc-bh4e20-1b and seven copies of a 

repetitive element, HcRep (Callaghan and Beh 1994, Grillo et al 2006, Hoekstra 

et al 1997), were identifiable at the break point in hc-bh4e20-1a, which may be 

associated with the gene duplication event (see Figure 5.7 and Section 5.2.11).  

 

5.2.9.2 Spliced leaders  

A 22 nucleotide transcribed sequence, sharing 100% identity with the spliced 

leader SL1 in other species, was identified in the H. contortus X chromosome 

fragment. In C. elegans, the 22 nt sequence is donated by a 100 nt small-nuclear 

ribonucleoprotein particle (snRNP), which is encoded by 110 tandem 1 Kb 

repeats on chromosome V only (The C. elegans Sequencing Consortium, 1998, 

Blumenthal 2005, Nelson and Honda 1985). In the H. contortus X chromosome 
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fragment there was only one copy of SL1, which was flanked by three upstream 

repeats of 400 bp and three downstream repeats of 106-146 bp. A BLASTn search 

of the H. contortus supercontig database identified contigs containing up to 71 

copies of the SL1 sequence at approximately 300 bp intervals, suggesting the 

tandem array pattern conserved in both C. elegans and C. briggsae (The C. 

elegans Sequencing Consortium, 1998, Nelson and Honda 1985, Nelson and 

Honda 1989) may be present elsewhere in the H. contortus genome (see Figure 

5.4). Up to five copies of the three downstream repeats (together at 400 bp 

intervals), and four contiguous copies of the 400 bp repeat, were present on 

numerous other contigs, but none were associated with the SL1 sequence.  

 

Trans-splicing with SL2-like sequences has previously been described in H. 

contortus (Redmond and Knox 2001, Rufener et al 2009). A search of the 

supercontig database identified only four supercontigs encoding an SL2 with 

100% identity to the published sequence (accession no. AF215836), with an 

additional two SL2-like sequences differing from the published sequence by one 

nucleotide and seven SL2-like sequences differing from the published sequence 

by three nucleotides. The array pattern associated with the SL1 sequence was 

not observed; one supercontig encoded five copies of SL2-like sequences but 

these were not 100% identical and they were not evenly spaced (see Figure 5.5). 

In C. elegans, there are 18 SL2 genes and they are dispersed throughout the 

genome (Blumenthal 2005, Stein et al 2003). 

 

Transcriptome reads containing SL1 and SL2 sequences were extracted from the 

raw Illumina files and trimmed to remove the spliced leader sequence. These 

trimmed reads were mapped against annotated sequence of the X chromosome 

fragment and BH4E20 to identify the spliced leader sequence used to trans-

splice each transcript (SL RNA-seq). The results are shown in Table 5.3. No SL 

RNA-seq reads were available for 26 genes. Of the remainder, most transcripts 

were trans-spliced to SL1, with the transcripts of four genes being trans-spliced 

to SL2 sequences.  

 

Two SL2-spliced genes, hc-15g16-2 and hc-bh4e20-3, had no upstream genes on 

the same strand within >35Kb and >47Kb respectively. However, SL2-spliced hc-

bh4e20-5 is 1403bp downstream from hc-bh4e20-6 on the same strand, and SL2-
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spliced hc-bh4e20-14 is 403bp downstream from hc-bh4e20-13 on the same 

strand. The C. elegans orthologues of hc-bh4e20-6 and hc-bh4e20-5 are co-

expressed  in an operon as are the C. elegans orthologues of hc-bh4e20-13 and 

hc-bh4e20-14 (see Section 5.2.9.3 and Figures 5.6 and 5.7). 

SL RNA-seq data identified alternative start codons for six genes and the same 

spliced leader was used for different transcripts of the same gene. Significantly 

fewer reads mapped to the more upstream start codon of alternately spliced 

gene hc-bh4e20-15, suggesting it is the start methionine of a rarer transcript. A 

similar number of reads mapped to both start codons for the other five genes.  

 

5.2.9.3 Evidence of Operons 

Around 15% of C. elegans genes are in operons, but their occurrence in H. 

contortus is unknown. Once gained, selection is thought to conserve operonic 

structure, as any subsequent loss would leave downstream genes without 

promoter sequences (Guiliano and Blaxter 2006). This is reflected in the 

conservation of 96% operons between C. elegans and C. briggsae (Blumenthal 

and Gleason 2003, Stein et al 2003). Operons are predicted to have evolved 

before SL2 trans-splicing (Guiliano and Blaxter 2006), so the identification of 

SL2-spliced genes in H. contortus is suggestive of the presence of operons. 

 

Functional constraints are thought to conserve intergenic regions within operons 

to approximately 100 bp in C. elegans although increased intergenic distances 

have been reported in a small number of downstream genes trans-spliced with 

SL1 (Blumenthal and Gleason 2003, Graber et al 2007, Stein et al 2003). Recent 

work by Rufener et al, 2009 may have identified an operon encoding two genes 

Hco-des-2H and Hco-deg-3H, the latter being SL2 trans-spliced. In this example, 

the intergenic distance is reported to be ten times larger than that between the 

orthologous pair of genes in a C. elegans operon. 

 

Studies have also identified two operons with intergenic distances of 336 and 

482 bp respectively in B. malayi (Liu et al 2010), although the filarial nematode 

trans-splices all downstream genes in putative operons with SL1, as it lacks any 

SL2-like sequences, in-keeping with its clade III phylogeny (Blumenthal and 

Gleason 2003).  
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Of the 12 C. elegans X chromosome orthologues, only gob-1 is in an operon 

(CEOPX136), perhaps reflecting the lower frequency of operons on the X 

chromosome (Blumenthal and Gleason 2003), and is transcribed with the 

downstream gene h13n06.4. The putative gob-1 orthologue in H. contortus, hc-

13c1-1, had no identifiable gene within the 10 Kb available downstream 

sequence based on BLASTx homology, RNA-seq or Genefinder predictions. A 

reciprocal BLAST search with the H13N06.4 polypeptide hit no sequence within 

the BAC contig database as expected, but did identify homologous sequence in 

the supercontig database (N terminus on supercontig_0011013: tBLASTn E=8.1e-

27, C terminus on supercontig_0033730: tBLASTn E=2.3e-30), suggesting the 

orthologous gene exists elsewhere in the H. contortus genome. How far from the 

available 10 Kb downstream of hc-13c1-1 was not determined, as no upstream 

sequence was available. The h13n06.4 homologue also appears to be expressed 

as RNA-seq reads map to its coding sequence on both supercontigs. hc-13c1-1 is 

SL1 trans-spliced. 

 

Of the 12 H. contortus genes on BH4E20 that have C. elegans orthologues on 

chromosome I, six of the C. elegans genes are known to be in operons: coq-4 in 

CEOP1124, k04g2.11 and ath-1 in CEOP1449 and f13g3.6, ttx-7, dylt-1 in 

CEOP1388.  

 

coq-4 is transcribed in an operon with upstream gene pgk-1, but an orthologue 

for the latter was not identified in the sequence studied. However, as for the 

example above, homologous sequence was identified in the supercontig database 

(N terminus on supercontig_0059510: tBLASTn E=4e30, C terminus on 

supercontig_0055090: tBLASTn E=4.5e-35), suggesting the orthologue exists 

elsewhere in the H. contortus genome, but no downstream gene was present in 

the available 600bp. Both the putative coq-4 orthologue, hc-bh4e20-10, and the 

putative pgk-1 orthologue identified in the supercontig database are expressed, 

as evidenced by a large number of RNA-seq reads mapping to their loci. A 396 bp 

transcript (hc-h4320-11) overlaps the predicted 5’end of the putative coq-4 

orthologue hc-bh4320.10 by eight nucleotides. The hypothetical polypeptide HC-

BH4E20-11 encodes a conserved zinc-finger domain and shares homology with C. 

elegans F53A3.7 (but little/none with PGK-1). The majority of zinc-finger 
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transcription factors, including f53a3.7, are not encoded in operons in C. elegans 

(Blumenthal and Gleason 2003). It is unclear if these genes are SL1 or SL2 trans-

spliced in H. contortus as no SL-trimmed transcriptome reads mapped to their 

loci. 

 

ath-1 is transcribed in the middle of a three gene operon in C. elegans with 

k04g2.11 upstream and cdc-48.3 downstream. An ath-1 orthologue, hc-bh4e20-5, 

was identified in H. contortus on BH4E20. Although orthologous genes for neither 

k04g2.11 nor cdc-48.3 were annotated in the original draft, knowledge of this 

operon allowed the retrospective annotation of the k04g2.11 orthologue, hc-

bh4e20-6, where RNA-seq data and BLASTx homology were too weak to 

previously identify the gene (see Figure 5.6). The intergenic region between the 

parasite genes was 1538 bp. An orthologue of the downstream gene cdc-48.3 was 

not identified on the sequence studied, but was on supercontig_0059449 

(tBLASTn E=7.5e-84). RNA-seq data suggested it was highly expressed and no 

upstream gene was identified in the available 18 Kb. No SL-trimmed reads 

mapped to hc-bh4e20-6, but both SL1 and SL2 reads mapped to hc-bh4e20-5, 

which is concurrent with its putative expression as a downstream gene in an 

operon. The C. elegans orthologue of this gene, ath-1, is also trans-spliced by 

both SL1 and SL2. 

 

f13g3.6, ttx-7 and dylt-1 are transcribed in a four gene operon with downstream 

gene f13g3.3. (see Figure 5.7). The orthologues of f13g3.6, ttx-7 and dylt-1 

were collinear on BH4E20, but an orthologue for f13g3.3 was not identified. 

However, as shown in Figure 5.7, sequence with homology to the F13G3.3 

polypeptide was present in the H. contortus supercontig database 

(supercontig_0004013 tBLASTn E=6.7e-23, supercontig_0050792 tBLASTn E=4.3e-

17, supercontig_0055990 tBLASTn E=6.2e-12), although no upstream sequence 

was available for analysis. No RNA-seq reads mapped to the predicted coding 

sequence with homology to f13g3.3 on the three supercontigs, so the gene may 

not be expressed in H. contortus. No SL-trimmed reads mapped to hc-bh4e20-12 

or hc-bh4e20-13, but both SL1 and SL2 reads mapped to hc-bh4e20-14. This is 

concurrent with its putative expression as a downstream gene in an operon and 

the C. elegans orthologue of this gene, dylt-1, is also trans-spliced by both SL1 

and SL2. 
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In summary, there seems to be partial conservation of operons in C. elegans and 

H. contortus. Genes that are ‘missing’ from putative H. contortus orthologues of 

C. elegans operons can be identified elsewhere in the genome. Some of these 

genes appear to be expressed, even in the case of orthologues of downstream 

genes in C. elegans operons, which would be predicted to lack their own 

promoter sequences. 

  

5.2.10 Mobile elements 

Of the 53 annotated transcripts, 12 encoded putative transposable elements 

(TEs), eight of which contained transposon-associated conserved domains. Four 

putative polypeptides, sharing homology with the retrotransposon rte-1 in C. 

elegans, had exonuclease endonuclease phosphatase, reverse transcriptase-like 

superfamily and non-long-terminal repeat retrotransposon and non-long terminal 

repeat retrovirus reverse transcriptase domains. Three putative polypeptides 

had conserved transposase-1 domains and one polypeptide had conserved pao 

retrotransposon peptidase and reverse transcriptase-like superfamily domains. 

Four transcripts shared most identity with TEs in other species but did not 

encode conserved domains (see Figure 5.2, Figure 5.3 and Table 5.2). 

 

RNA-seq reads mapped to nine of the 12 TEs. Of the remaining three, TE6 and 

TE7 differed by only one nucleotide, so if reads were to map to these loci, they 

could be subject to filtering, and TE2 has no start methionine, so may represent 

a pseudogene. However, the extent to which any TE loci are transcribed is 

unclear; inherent in the process of aligning whole transcriptome reads to only a 

portion of the genome, is the possibility that reads from a transcribed element 

elsewhere in the genome could be mapped to a non-transcribed loci e.g. reads 

from a functional mobile element mapping to non-functional daughter progeny 

or to remnant sequence at ancient loci.  

 

Interestingly, transcriptome reads mapped to mobile element sequence within 

introns of the downstream genes involved in both gene duplications previously 

described in this chapter. hc-13c1-5 has a retrotransposon insertion in intron 6, 

and hc-bh4e20-1b has a mariner transposase insertion in intron 9 (see Figure 
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5.8). As mentioned, the break point in hc-bh4e20-1a contains seven copies of 

HcRep. 

 

5.2.11 Repetitive Sequence 

Tandem Repeats Finder (Benson 1999) was used to identify repetitive sequence 

on the X fragment and BH4E20 using the default programme parameters (‘basic 

search’). 33 tandem repeat loci were identified on the X fragment and 24 were 

identified on BH4E20. On the X fragment, tandem repeats were slightly more A 

(30.8%) and T (30.2%) rich, but codon usage was almost equal on BH4E20. The 

average period size was 34.4 nucleotides and 20.4 nucleotides and the average 

copy number was 3.4 repeats and 4.4 repeats on the x fragment and BH4E20 

respectively. 

 

Characteristic repeat elements ‘HcRep’ and ‘TcRep’ have previously been 

described in the genomic sequences of H. contortus and T. circumcincta 

respectively (Callaghan and Beh 1994, Grillo et al 2006). Seven copies of HcRep 

are present on BH4E20, as an array in intron 15 of hc-bh4e20-1a. As shown in 

Figure 5.9, the first three copies (A-C) are most divergent, copies D-F are highly 

similar to HcRep, and copy G is similar to the TcRep in T. circumcinta. The 

repeat elements are associated with an upstream (GTCT)14 tandem repeat. 

 

Previous studies have estimated over 0.1% of the H. contortus genome is related 

to HcRep1 based on Southern blot hybridisation intensity using the SE isolate 

(Hoekstra et al 1997). A BLASTn search of the H. contortus supercontig database 

identified over 3000 matches (P<1e-05) to the published consensus HcRep 

(accession U86701). RNA-seq reads mapped to all seven copies of the repeat 

element, indicating HcRep sequences are expressed in H. contortus. However 

the reads may be mapping from expressed HcRep elements elsewhere in the 

genome, so expression of these particular copies on BH4E20 is not known. 

 

The HcRep locus identified in this project is in intron 15 of hc-bh4e20-1a and 

corresponds to the exact break point relating to the upstream partial gene, hc-

bh4e20-1b as described above. 
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5.3 Tables and Figures 



        

 
 
 
 
 

hc-bh4e20-16

 
 
 

Figure 5.1: Artemis screenshot of RNA-seq reads aligned to genomic sequence to guide annotation of gene hc-bh4e20-16 
Paired stack view is selected to assess positions of reads relative to their mate pairs (connected by grey line). 
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453009031851.57.58.5297.5895.54843.5MEDIAN

5.256.25373.671124.002737.468.839.83383.461152.925719.58AVERAGE

1.00E-31I23106321543dylt-1341153483107hc-bh4e20-14

3.00E-118I562858581805ttx-7782858586517hc-bh4e20-13

4.00E-92I5635710741343f13g3.691039011736998hc-bh4e20-12

7.00E-26III23119360485f53a3.7341313961258hc-bh4e20-11

1.00E-87I34231696844coq-4452357081558hc-bh4e20-10

8.00E-56I23152459645arx-7451524592633hc-bh4e20-9

0I121391227399937y54e10br.1171888126464921hc-bh4e20-8

4.00E-87I453059181206air-2892828462799hc-bh4e20-7

3.00E-08I2385258352k04g2.11341183571371hc-bh4e20-6

7.00E-83I342236721656ath-1562206603295hc-bh4e20-5

7.00E-78I7844013232048gly-188934410354766hc-bh4e20-4

0I1314127238199012pgp-233341304391518110hc-bh4e20-1a

1.00E-59X341624893871m60.4451624865360hc-18g2-4

1.00E-92X562958882218dhhc-1892928793556hc-18g2-3

1.00E-135X121377923405991f25f6.1161788826679409hc-18g2-2

8.00E-180X91043513083230arr-1111248014436811hc-18h7-7

6.00E-149X5633510083616sms-27835210598954hc-18h7-4

1.00E-78X45209630895zk154.1563039123341hc-18h7-3

5.00E-17X562036125132zk154.4562136427731hc-18h7-2

0X4544113261596mec-71213441132610663hc-18h7-1

3.00E-41X342046151898e01g6.2452076226782hc-15g16-2

0V4554016232402klc-2151653115968243hc-7n11-3

5.00E-105V4541012331566folt-1101139912004392hc-13c1-5

8.00E-136X8946814073408gob-1111247814374695hc-13c1-1

BLASTPCHROMOSOMEINTRONSEXONSPROTEINSPLICEDUNSPLICEDGENEINTRONSEXONSPROTEINSPLICEDUNSPLICEDGENE

C. elegansH. contortus

 

Table 5.1: Subset of 24 C. elegans and H. contortus putative orthologues  
Sizes in nucleotides or amino acids as appropriate. Unspliced length is genomic sequence from ATG to terminal stop codon (does not include 5’ or 3’ UTR). 
Spliced length is predicted protein coding sequence only.
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hc-13c1-1

hc-13c1-2

hc-13c1-3

hc-13c1-4

hc-13c1-5

hc-7n11-1

hc-7n11-2

hc-7n11-3

hc-7n11-4

hc-15g16-1

hc-15g16-2

hc-18h7-1 

hc-18h7-2

hc-18h7-3

hc-18h7-4

hc-18h7-5

hc-18h7-6

hc-18h7-7

hc-18g2-1

hc-18g2-2

hc-18g2-3

hc-18g2-4

hc-18g2-5

sms-2   

arr-1   

f25f6.1  

mec-7  

zk154.4  

zk154.1   

m60.4   

e01g6.2

dhhc-1  

gob-1   

(V)

(V)

H. contortus X fragment: 409kB C. elegans X chromosome: 0.94-15.5Mb

 

Figure 5.2: Conserved microsynteny between H. contortus X fragment and C. elegans X 
chromosome  
Putative orthologues are in black type and transposon insertions are shown as dark blue ORFs. 
Colinearity is maintained in H. contortus orthologues of C. elegans mec-7, zk154.4 and zk154.1. 
hc-13c1-5 and hc-7n11-3 are orthologous with genes on C. elegans chromosome V.



 

y54e10br.1

arx-7

coq-4

pgp-2

air-2

gly-18

dylt-1

ttx-7

f13g3.6

ath-1

k04g2.11

hc-bh4e20-1a

hc-bh4e20-1b

hc-bh4e20-2

hc-bh4e20-3

hc-bh4e20-4

hc-bh4e20-5

hc-bh4e20-6

hc-bh4e20-7

hc-bh4e20-8

hc-bh4e20-9 

hc-bh4e20-10

hc-bh4e20-11

hc-bh4e20-12

hc-bh4e20-13

hc-bh4e20-14

hc-bh4e20-15

hc-bh4e20-16

hc-bh4e20-17

(III)

H. contortus BH4E20: 181kB C. elegans chromosome I: 3.06-8.04Mb

 

Figure 5.3: Conserved microsynteny between H. contortus BH4E20 and C. elegans chromosome I:  
Putative orthologues are in black type and transposon insertions are shown as dark blue ORFs. Colinearity is maintained in H. contortus 
orthologues of C. elegans y54e10br.1 and arx-7, orthologues of C. elegans dylt-1, ttx-7 and f13g3.6 and orthologues of C. elegans ath-1 and 
k04g2.11. The last two gene sets are in operons in C. elegans. hc-bh4e20-11 is orthologous with f53a3.7 on C. elegans chromosome III. 
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Transposable element Locus Conserved Domains 

TE1 intron 10 of hc-18h7-1 transposase-1 

TE2 - -  

TE3 - Pao retrotransposon peptidase and reverse transcriptase-like  

TE4 within 3kB of 5' end hc-18g2-4 reverse transcriptase, retrotransposon, DYN1 and exo/endonuclease phosphatase 

TE5 - transposase-1 

TE6 -  - 

TE7 -  - 

TE8 intron 6 of hc-13c1-5 reverse transcriptase, retrotransposon and exo/endonuclease phosphatase 

TE9 intron 9 of hc-bh4e20-1b transposase-1 

TE10 intron 6 of hc-bh4e20-7 exo/endonuclease phosphatase superfamily, non-LTR retrotransposon and retrovirus reverse transcriptase 

TE11 intron 5 of hc-bh4e20-13  - 

TE12 within 4kB of 3' end hc-bh4e20-16 reverse transcriptase 
 
Table 5.1: 12 transposable elements identified in 490 Kb genomic sequence   
Locus describes TE insertion relative to nearest gene as shown in Figure 5.2 and Figure 5.3
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>Supercontig_0013605 
 Length = 2257 

 

 
 
Plus Strand HSPs: 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%) 
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:  1948 GGTTTAATTACCCAAGTTTGAG 1969 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:  1629 GGTTTAATTACCCAAGTTTGAG 1650 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:  1310 GGTTTAATTACCCAAGTTTGAG 1331 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:   991 GGTTTAATTACCCAAGTTTGAG 1012 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:   672 GGTTTAATTACCCAAGTTTGAG 693 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:   353 GGTTTAATTACCCAAGTTTGAG 374 
 
 Score = 110 (22.6 bits), Expect = 1.8e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTAATTACCCAAGTTTGAG 22 
             |||||||||||||||||||||| 
Sbjct:    34 GGTTTAATTACCCAAGTTTGAG 55 

 

 

Figure 5.4: Typical example of a BLASTn search of the supercontig database with 
published H. contortus SL1 nucleotide sequence. This supercontig encodes an array of 
seven copies of identical SL1 sequences with ~300 bp separating each one. 144 
supercontigs were identified as encoding at least one copy of SL1 with 100% nucleotide 
identity to the published sequence (accession no. Z69630). 
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>Supercontig_0057982  
 Length = 35,136 
 

 
         
Plus Strand HSPs: 
 
 Score = 110 (22.6 bits), Expect = 1.9e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:     1 GGTTTTAACCCAGTATCTCAAG 22 
             |||||||||||||||||||||| 
Sbjct: 12944 GGTTTTAACCCAGTATCTCAAG 12965 
 
 Score = 101 (21.2 bits), Expect = 4.9e+02, P = 1.00000 
 Identities = 21/22 (95%), Positives = 21/22 (95%)  
 
Query:     1 GGTTTTAACCCAGTATCTCAAG 22 
             ||||||||||||||||| |||| 
Sbjct: 17950 GGTTTTAACCCAGTATCACAAG 17971 
 
 Score = 83 (18.5 bits), Expect = 3.1e+03, P = 1.00000 
 Identities = 19/22 (86%), Positives = 19/22 (86%)  
 
Query:     1 GGTTTTAACCCAGTATCTCAAG 22 
             |||| ||||||||||||  ||| 
Sbjct: 17019 GGTTATAACCCAGTATCAAAAG 17040 
 
 Score = 83 (18.5 bits), Expect = 3.1e+03, P = 1.00000 
 Identities = 19/22 (86%), Positives = 19/22 (86%)  
 
Query:     1 GGTTTTAACCCAGTATCTCAAG 22 
             |||| ||||||||||||  ||| 
Sbjct: 15375 GGTTATAACCCAGTATCAAAAG 15396 
 
 Score = 83 (18.5 bits), Expect = 3.1e+03, P = 1.00000 
 Identities = 19/22 (86%), Positives = 19/22 (86%) 
 
Query:     1 GGTTTTAACCCAGTATCTCAAG 22 
             |||| ||||||||||||  ||| 
Sbjct: 13838 GGTTATAACCCAGTATCAAAAG 13859 
 
 Score = 60 (15.1 bits), Expect = 2.2e+04, P = 1.00000 
 Identities = 12/12 (100%), Positives = 12/12 (100%) 
 
Query:     7 AACCCAGTATCT 18 
             |||||||||||| 
Sbjct: 21988 AACCCAGTATCT 21999 
 
Minus Strand HSPs: 
 
 Score = 110 (22.6 bits), Expect = 1.9e+02, P = 1.00000 
 Identities = 22/22 (100%), Positives = 22/22 (100%)  
 
Query:    22 CTTGAGATACTGGGTTAAAACC 1 
             |||||||||||||||||||||| 
Sbjct: 22086 CTTGAGATACTGGGTTAAAACC 22107 
 

Figure 5.5: BLASTn search of the supercontig database with a published H. contortus 
SL2 nucleotide sequence. Unlike the SL1 BLASTn result (see Figure 5.4) a number of 
non-identical SL2-like sequences were identified, and only one supercontig encoded 
multiple copies of SL2 (shown above). The copies encoded on this supercontig are not 
identical and the distance between them varies. Published SL2 sequence was accession 
no. AF215836. 
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GENE SPLICED LEADER ALTERNATE START CODON INTERGENIC DISTANCE IF SL2 TRANS-SPLICED
hc-13c1-1 SL1 first codon exon 2 (SL1)

hc-13c1-4

hc-13c1-5

hc-18g2-2

hc-18g2-3 SL1 mid exon 2 (SL1)

hc-18g2-4 SL1

hc-18h7-1

hc-18h7-2

hc-18h7-3

hc-18h7-4

hc-18h7-7 SL1 mid exon 2 (SL1)

hc-7n11-3

hc-18h7-6

hc-13c1-2

hc-13c1-3 SL1

hc-15g16-1 SL1

hc-15g16-2 SL2 no upstream gene for >35Kb

hc-18h7-5

hc-7n11-1

hc-7n11-2 SL1

hc-7n11-4

hc-18g2-1

hc-18g2-5

hc-bh4e20-1a

hc-bh4e20-2

hc-bh4e20-3 SL2 all upstream genes on opposite strand for >47Kb

hc-bh4e20-4

hc-bh4e20-5 SL1/SL2 first codon exon 2 (SL1/SL2) 1403bp downstream from hc-bh4e20-6  on same strand
hc-bh4e20-6

hc-bh4e20-7

hc-bh4e20-8 SL1

hc-bh4e20-9

hc-bh4e20-10

hc-bh4e20-11

hc-bh4e20-12

hc-bh4e20-13

hc-bh4e20-14 SL1/SL2 403bp downstream from hc-bh4e20-13  on same strand
hc-bh4e20-15 SL1 mid exon 2 (SL1)

hc-bh4e20-16 SL1

hc-bh4e20-17

 

Table 5.3: Trans-splicing 
The spliced leader trans-spliced to each transcript was identified using SL-trimmed 
RNA-seq data where available. Alternative start codons were identified for six 
transcripts and the same spliced leader was used for alternate transcripts of the same 
gene. Intergenic distance of the nearest upstream gene is shown for the four sequences 
trans-spliced to SL2.
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k04g2.11                             ath-1                              cdc-48.3                           

C. elegans chromosome I 

974bp                                         1247bp           

SL1                                       SL1/SL2             SL1/SL2                                             

cdc-48.3 homologue hc-bh4e20-6                     hc-bh4e20-5                                                               

H. contortus BH4E20 supercontig_0059449 

1538bp                                       1332bp to hc-bh4e20-4 18Kb                   

SL1/SL2                  

 

Figure 5.6: C. elegans operon CEOP1449 and orthologues on H. contortus BH4E20 of two of the three constituent genes. 
An orthologue of the third gene, cdc-48.3, is not encoded with the two upstream genes on BH4E20 but appears to be present elsewhere in the 
genome: homologous sequence can be identified on supercontig_0059449 (top hit from tBLASTn search of supercontig database with CDC-48.3 
polypeptide; reciprocal BLASTx search with supercontig_0059449 into Wormpep confirms best hit CDC-48.3). No coding sequence was identified 
in the 18 Kb upstream sequence of the H. contortus cdc-48.3 homologue. Intergenic distance was 974 bp for k04g2.11 and ath-1 in C. elegans and 
1538 bp for the orthologous genes in H. contortus. The next H. contortus gene on BH4E20, hc-bh4e20-4, is only 1332 bp downstream but is 
encoded on the opposite strand. SL-trimmed RNA-seq data was only available for hc-bh4e20-5 but showed the transcript was trans-spliced to both 
SL1 and SL2 spliced leader sequences.
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f13g3.6                       ttx-7                        dylt-1                              f13g3.3

hc-bh4e20-12                     hc-bh4e20-13                    hc-bh4e20-14                                                              

supercontig_0004013
H. contortus BH4E20 supercontig_0050792

supercontig_0055990

C. elegans chromosome I 

118bp                                           93bp           85bp

6183bp                                         403bp         9794bp to hc-bh4e20-15

SL1                                       SL1/SL2             SL1/SL2                                             SL2

f13g3.3 homologue 

SL1/SL2                                    

 

Figure 5.7: C. elegans operon CEOP1388 and orthologues on H. contortus BH4E20 of three of the four constituent genes 
An orthologue of the fourth gene, f13g3.3, is not encoded with the three upstream genes on BH4E20 but appears to be present elsewhere in the 
genome: homologous sequence can be identified on three supercontigs (top hits from tBLASTn search of supercontig database with F13G3.3 
polypeptide; reciprocal BLASTx searches with same three supercontigs into Wormpep confirm best hit F13G3.3). No upstream sequence of the H. 
contortus f13g3.3 homologue is available. Intergenic distance ranges from 85-118 bp for the four C. elegans genes in CEOP1388 and from 403-
6183 bp for the three orthologous genes in H. contortus. The next H. contortus gene on BH4E20, hc-bh4e20-15, is 9794 bp downstream and is 
encoded on the reverse strand. SL-trimmed RNA-seq data was only available for hc-bh4e20-14 but showed the transcript was trans-spliced to both 
SL1 and SL2 spliced leader sequences.
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Figure 5.8: Alternate splicing of gene hc-bh4e20-1, a putative p-glycoprotein. 

The alternate 3’ ends of gene hc-bh4e20-1 share 97% nucleotide identity, and the C-termini of the predicted polypeptides share 99% 
amino acid identity. Seven of the nine amino acid substitutions (each marked    ) lie outside conserved domains and all but one (    ) are 
synonymous. HC-BH4E20-1b has a three amino acid deletion (marked        )

The break-point in hc-bh4e20-1a is associated with seven copies of the repetitive element HcRep and sequence sharing identity with a 
mariner transposon is present within intron 8 of hc-bh4e20-1b.

Not to scale.
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(GTCT)14 RepA          RepB          RepC          RepD          RepE    RepF      RepG

1033bp

132bp 143bp 182bp 128bp 127bp 128bp 111bp26bp 56bp

 
 

Figure 5.9: Copies of HcRep sequence identified on BAC BH4E20 
Seven copies of the repeat element were identified on BH4E20 and RNA-seq suggests they are expressed. A ClustalW guide tree based on multiple sequence 
nucleotide alignment shows adjacent HcRep copies are most similar to each other. RepD, RepE and RepF share most homology with the published H. 
contortus HcRep consensus sequence (accession no. U86701), while RepG is more similar to T. circumcincta repeat element TcRep (accession no. M84610). 
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Best BLASTx hit in C. elegans Second best BLASTx hit in C. elegans 

H. contortus BAC insert Gene Chromosome Expect value Gene Chromosome Expect value 

haembac8e5 avr-1 I 3e-46 gbr-2b I 1e-28 

  f39b2.3 I 1e-20 - - - 

  TE    TE    

  TE    TE    

  dnj-12 I 8e-20 dnj-19 V 7e-13 

haembac18a19 trxr-1 IV 1e-15 trxr-2 III 6e-14 

  tpk-1 III 1e-17 - - - 

  unc-32 III 3e-29 vha-6 II 9e-22 

  TE  5e-57 TE  1e-50 

  lin-9 III 4e-31 - - - 

  cyp43a1 X 5e-31 cyp13a1 III 1e-20 

bha11l19 TE   4e-61 TE   7e-47 

  zc132.4 V 6e-27 - - - 

  TE  1e-63 TE  1e-63 

  vap-1 X 9e-25 t05a10 X 1e-18 

  c47f8.2 X 1e-07 - - - 

  mek-2 I 2e-06 jkk-1 X 3e-05 

  TE  5e-23 TE  7e-23 

  TE  1e-19 TE  2e-19 

  ztf-2 I 5e-26 syd-9 X 1e-04 

  col-89 III 7e-14 col-10 V 2e-13 
  TE   2e-05 TE   2e-05 

 

Table 5.4: BLAST survey of three additional H. contortus BAC insert sequences 
Each sequence was divided into 50 Kb sections, which were used for a BLASTx search of C. elegans Wormpep. The best and second best hit for each locus 
was recorded. TEs represent transposable elements. 
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5.4 Discussion 

5.4.1 Genomic sequence comparison of H. contortus and C. 

elegans 

5.4.1.1 H. contortus gene structure and implications for genome size 

The gene density in the annotated H. contortus sequence was 2-3 times lower 

than that in C. elegans. It is possible that this is an overestimate of the 

difference as there could be more parasite genes to be identified; genes with 

stage-specific (embryo, L1 or L4) or low expression would not be detected with 

RNA-seq and genes that are H. contortus-specific or very divergent from other 

species might not be detected with sequence homology. 

Further, the density of genes on the C. elegans X chromosome is lower than that 

on the autosomes (The C. elegans Sequencing Consortium, 1998). Difference in 

gene density between the X fragment and BH4E20 suggests this might also be the 

case in the parasite, which would again make the estimated density in this study 

an underestimate for the genome. 

The main reason for the lower gene density in H. contortus was gene size. The 

average and median gene sizes were more than 2-fold greater in the parasite 

due to a larger intron number and length. The true difference in gene size may 

be greater yet, as sequences with homology to TEs were subtracted from 

calculations of parasite intron size, but these may represent ancient remnants, 

so arguably could be incorporated into the intron size statistics. The benefit of 

this intronic expansion is unclear. It would be expected to reduce the efficiency 

of transcription (Castillo-Davis et al 2002) but perhaps this cost is offset by an 

advantage conferred by functional elements encoded in the introns or by 

facilitating TE insertion to promote gene evolution. 
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5.4.1.2 Homology 

All putative protein-coding genes other than hc-13c1-2 had putative homologues 

(BLASTp, E>1e-10) in C. elegans. This represents 97.6% gene conservation, a 

significantly higher percentage than the ~65% estimated by Parkinson et al 

(2004). The lowest BLASTp score of E=3e-11 recorded in this study corresponded 

to a BLASTx score of E=8e-11, while Parkinson et al (2004) used a BLASTx cut-off 

of E=10e-5 to signify homology. The higher figure for gene conservation in this 

study is therefore not explained by a lower stringency level for the identification 

of homologues. However, the use of RNA-seq may have biased this project’s 

results for more conserved genes, as constitutively expressed housekeeping 

genes are more likely to be highly expressed and easily detected with 

transcriptome data. The other possibility is that homology is more likely to be 

detected for a survey of full-length genes than for ESTs, as a number of the 

latter will represent only the divergent regions of otherwise homologous genes.  

5.4.1.3 Synteny 

Studies comparing the C. elegans genome with C. briggsae and B. malayi 

genomes have shown high rates of rearrangement (Coghlan and Wolfe 2002, 

Ghedin et al 2007, Guiliano et al 2002, Hillier et al 2007, Stein et al 2003). The 

rearrangement rate of C. briggsae has been estimated at 0.4-1 chromosomal 

breakages per Mb per million years (Coghlan and Wolfe 2002), which is at least 

four times that of D. melanogaster (Ranz et al 2001).  

Intra-chromosomal rearrangements are more common than inter-chromosomal 

rearrangements (Coghlan and Wolfe 2002, Ghedin et al 2007, Guiliano et al 

2002, Hillier et al 2007, Stein et al 2003). This has been suggested to occur 

because intra-chromosomal rearrangements require fewer DNA breaks and 

because the conformation of the nuclear scaffold may maintain the association 

of local regions (Guiliano et al 2002). The results of this study suggest the same 

may be true in H. contortus: overall synteny was not conserved, yet ten of 12 

putative orthologues on the X fragment were on the C. elegans X chromosome 

and 11 of 12 putative orthologues on BH4E20 were on C. elegans chromosome I. 
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Interestingly, the X chromosome appears to have a lower rate of structural 

evolution than the autosomes in C. elegans. In a comparison with C. briggsae, 

the X chromosome contains two of the three largest conserved segments and has 

undergone around half as many rearrangements as the autosomes since the 

worms diverged (Stein et al 2003). It has been suggested that its involvement in 

sex determination selects against structural rearrangements (Coghlan et al 2008) 

as in B. malayi, which has a Y chromosome, the X chromosome appears to have 

undergone a higher rate of inter-chromosomal rearrangement than the 

autosomes (Whitton et al 2004). 

Although this pilot annotation covered only 590 Kb of sequence, the emerging 

pattern of selection for intra-chromosomal rearrangements is expected to be a 

true reflection of the whole genome. 50% of H. contortus BAC ends had matches 

on the same C. elegans chromosomes, which is significantly higher than the 

value expected had inter-chromosomal rearrangements been as likely as intra-

chromosomal rearrangements. It is lower, however, than might be expected 

from the 590 Kb annotation. In a similar survey of B. malayi BAC ends, 60% had 

matches on the same C. elegans chromosomes, yet there was very little 

conserved microsynteny (Whitton et al 2004). This suggests either a greater 

degree of conservation in the H. contortus X chromosome and chromosome I 

sequences annotated, or that the failure to ensure homologues identified in the 

BAC end analysis were true orthologous pairs has led to the incorrect association 

of a number of genes, artificially lowering the predicted level of chromosomal 

synteny. A combination of both these factors is perhaps most likely. 

This was further examined with survey of an additional three randomly selected 

BAC insert sequences. Redman et al (2008) had previously shown the H. 

contortus 409Kb contig was syntenic with the C. elegans X chromosome by 

performing a BLASTx search of C. elegans Wormpep using 50 Kb sections of the 

contig. A BLAST hit with an expect value of ≥1e-08, where the next best hit had 

an e value of >0.01, was considered to represent an orthologue. When this 

method was applied to the three BAC sequences however, none of the second 

best BLAST hits had an e value of >0.01, with the majority of loci yielding 

multiple hits with e values of ≥ 1e-08 (see Table 5.4). These findings are, again, 
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suggestive of a more highly conserved X chromosome and highlight the dangers 

of inferring orthology from BLAST scores alone.  

  

In this 590 Kb pilot annotation, regions of conserved microsynteny between H. 

contortus and C. elegans were apparent. Four regions with collinear genes were 

identified, two of which contained orthologues of genes in operons in C. elegans.  

Once formed, operons are thought to be difficult to break, as downstream genes 

would be left without promoters (Blumenthal and Gleason 2003). However, none 

of the H. contortus regions sharing synteny with C. elegans operons encoded the 

full complement of genes. Putative orthologues for all ‘missing’ genes could be 

identified elsewhere in the genome and interestingly, RNA-seq reads mapped to 

all but one of these genes, suggesting they are expressed. 

96% of C. elegans operons are conserved in C. briggsae (Stein et al 2003) but it 

has been shown that the 4% of operons that are not conserved are a result of not 

only operon gains in C. elegans but also losses in C. briggsae (Qian and Zhang 

2008). The same study identified a four-gene operon in C. elegans in which the 

first three genes were translocated to a different chromosome in C. briggsae. 

Despite this, all four genes were expressed in C. briggsae and the authors 

suggested the separated downstream gene had formed an operon with its new 

upstream gene. A similar mechanism may have facilitated expression of hc-

bh4e20-10 in H. contortus. This is a putative orthologue of C. elegans coq-4, a 

gene expressed downstream of pgk-1 in two-gene operon CEOP1124. Despite hc-

bh4e20-10 lacking an upstream orthologue of pgk-1, RNA-seq data shows it is 

expressed. However, a different upstream gene, hc-bh4e20-11, overlaps the 

predicted 5’ end of hc-bh4e20-10 by eight nucleotides. hc-bh4e20-11 shares 

homology with C. elegans f53a3.7, which is not in an operon. It is possible that 

these genes have formed a new operon in H. contortus. No SL-trimmed RNA-seq 

reads mapped to this gene, so it is unclear if it is SL2 trans-spliced.  

5.4.1.4 Mobile elements and repetitive DNA 

Approximately 12% of the C. elegans genome is comprised of TEs, although most 

of these are thought to be no longer mobile (The C. elegans Sequencing 

Consortium, 1998). The 12 H. contortus TEs identified in this study represent 

146 



 

just over 3% of the 590 Kb genomic sequence analysed but the significant 

number of transcriptome reads mapping to TE loci suggests these elements may 

be highly active within the H. contortus genome. 

Along with mutations generated by DNA-polymerase errors, TE insertions are the 

main internal drivers of genetic change, and the association of mobile elements 

with chromosome rearrangements in Caenorhabditis and Drosophila are well 

known (Bessereau 2006, Caceres et al 1999, Duret et al 2000). An association of 

repetitive sequence with synteny break points in Caenorhabditis has also been 

identified (Coghlan and Wolfe 2002, Stein et al 2003). This may be an indirect 

association, if repetitive sequences represent derivatives of TEs or are generated 

by TE insertions, or a direct association if repetitive sequences induce ectopic 

recombination between repeats (Coghlan and Wolfe 2002).  

 

Both putative gene duplications identified in this study were associated with 

intronic transposon insertions, and one was also associated with the repeat 

element HcRep. Studies have suggested that TEs might be enriched within or 

flanking environmental response genes, such as the cytochrome P450 family 

(Chen and Li 2007). Genomic plasticity would be predicted to be advantageous 

at these loci, as it would facilitate adaptive response to changes in the 

environment. Consistent with this hypothesis, a gene duplication associated with 

an intronic mariner transposon insertion and the repeat element HcRep was 

identified at a P-glycoprotein locus in this study. A TE insertion was observed in 

intron 5 of hc-bh4e20-13, which may also be an environmental response gene: 

the putative orthologue in C. elegans, ttx-7, encodes a myo-inositol 

monophosphatase required for normal thermotaxis and chemotaxis to sodium 

(Tanizawa et al 2006). However, a retrotransposon-associated gene duplication 

was also identified involving the orthologue of C. elegans folt-1, a folate 

transporter, and intronic TE insertions were identified in two H. contortus genes 

more likely to have constitutive functions: orthologues of the C. elegans mec-7 

(a β-tubulin) and air-2 (a serine/threonine protein kinase).  

 

Although the number of TE insertions might be expected to be lower in the X 

chromosome because recessive deleterious insertions would be selected against 

since males are XO, Duret et al (2000) found a slightly higher overall TE density 
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in the X chromosome. However, within this, certain families were over-

represented and certain families appeared to be selected against. In contrast, in 

this study, the X fragment did have a slighter lower frequency of one TE per 

51Kb, relative to one TE per 45Kb in BH4E20, but it was unclear if there was 

selection bias on any specific TE family in this small subset. 

5.4.2 Implications for the genome project  

Nematode genomes are evolving rapidly. Comparisons of C. elegans and C. 

briggsae genomes relative to mouse and human genomes (the former pair 

diverged ~80-110 million years ago, the latter ~75 million years ago), showed the 

nematodes have fewer 1:1 orthologue pairs, more genes lacking matches in both 

species, a nearly 3-fold higher nucleotide substitution rate and a dramatically 

higher chromosomal rearrangement rate (Stein et al 2003). The same authors 

highlighted the incongruity between the almost indistinguishable morphological 

differences between C. elegans and C. briggsae and the difference in physical 

appearance between the more genetically similar mouse and human. 

C. elegans and H. contortus are estimated to have diverged 400 million years 

ago (Vanfleteren et al, 1994) but the degree of conservation between the two 

genomes would be expected to underpin the success or otherwise of the H. 

contortus genome project. The impact of the H. contortus adaptation to 

parasitism on the (potentially highly plastic) nematode genome is unknown, but 

it was predicted that the retention of a conserved genetic core relating to 

essential biological processes would facilitate a comparative bioinformatic 

approach for gene discovery and annotation (Gilleard 2004). 

In this study, gene discovery and annotation based on RNA-seq data and 

sequence homology with C. elegans have been found to correspond closely, and 

a number of putative orthologues have been identified. It is unclear if positional 

information of genes in C. elegans will be of use for finding orthologues in the 

parasite due to intra-chromosomal rearrangements, but homologous genes 

appear to reside on the same chromosomes frequently, and where present, local 

regions of microsynteny can be used as supporting evidence of orthologous 

relationships. 
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The generation of databases of H. contortus transcriptome reads for different 

isolates and life stages has provided a valuable resource. They can be aligned to 

genomic sequence to guide annotation of the genome and have proven especially 

useful for mapping splice variants and divergent sequence that escapes 

identification by comparative approaches. RNA-seq can also be used for the 

identification of transcribed regulatory sequences and non-coding RNAs. 

The technology and software for RNA-seq is developing rapidly. Over the course 

of this project alone, Illumina sequencing lengths have increased from 35bp to 

100bp, and improved aligners are faster, allow more reads to be mapped and 

clip ends for quality to better demarcate intron: exon boundaries. In addition, it 

is simple to format aligner output files to open directly into Artemis, allowing 

reads to be filtered for quality, mate-pairs to be traced, and alignments to be 

viewed at an individual read or individual base level of clarity.  

de novo assembly of the H. contortus transcriptome is also underway. This has 

the benefit that it does not rely on a reference genome, so can be undertaken 

independently until the genome is assembled. It is hoped, through comparison 

with the C. elegans transcriptome, that this will this aid research into parasite 

drug resistance by facilitating identification and analysis of known drug 

resistance genes in other species and parasite-specific drug targets. 

This work also indicates that the previous prediction of the genome size of H. 

contortus at 53 Mb may be an underestimate (Leroy et al 2003). The C. elegans 

genome is 100 Mb and if the parasite genome has a similar gene complement, a 

gene density and size differing from the model worm by a 2-3 fold magnitude 

would be suggestive of a ~200-300 Mb genome. This has obvious repercussions 

for the genome project, but may in part explain the current difficulties with 

assembly. If genome size does prove to be significantly larger, the availability of 

NGS should make the problem eminently solvable. In addition, the increased 

depth of sequencing facilitated by this technology would also be expected to 

resolve ongoing issues of polymorphism. 
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6 General Discussion 

This project had initially focused on the partial sequences of four CYP genes, 

shown by phylogenetic analysis to be most similar to the multi-drug resistance 

gene cyp6g1 in insects and the multi-drug/anthelmintic-metabolising gene 

cyp3a4 in humans (data not shown). However, during the course of this study, 

the genomes of other nematodes (C. briggsae, P. pacificus, M. hapla, M. 

incognita, B. malayi) and trematodes (S. mansoni) were completed in addition to 

a number of animal and insect genomes, allowing more extensive comparisons of 

the CYP family both within and between phyla. From this, it became apparent 

that the superfamily was evolving so rapidly that orthologues between even 

closely related species might be difficult to identify. Further, progress with the 

H. contortus genome project revealed a CYP family that grew incrementally 

larger with each new assembly, so a wider and more inclusive approach was 

deemed possible. Consequently, a semi-quantitative PCR screen of all identified 

CYPs was developed but due to a lack of sensitivity was succeeded by a real-

time PCR screen. The H. contortus transcriptome was also sequenced to 

facilitate comparison of gene expression on a global scale and to guide genome 

annotation. 

Attempts to assemble the H. contortus CYP family in this project were only 

partially successful, but it was possible to provide an overview of the gene 

family. Reassuringly, many of the challenges faced were common to the 

assembly of the CYP family in incomplete genomes of other species e.g. 

clustering, recent duplications, pseudogenes and detritus exons arranged in 

tandem. In insect genomes, the high identity of adjacent CYPs has been known 

to result in problems with assembly resulting in gaps at these loci (Feyereisen 

2010) and this may have been a confounding factor in the struggle with the H. 

contortus genome assembly. An additional consideration for the CYP family in all 

species is the occurrence of within-species polymorphism in CYP gene copy 

number i.e. the number of CYP genes may vary between individuals (Feyereisen 

2010). This is seen in a comparison of the two reference human genomes, 

where, for example, Craig Venter has two copies of cyp1a2. Gene copy 

polymorphism might be especially likely in an innately polymorphic species such 
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as H. contortus and if present will further complicate the assembly of the 

reference genome from a population of worms. 

Due to the common challenges of assembling the CYP family, databases of large 

numbers of partial CYP sequences are accumulating for many species. Fogleman 

and Danielson (2000) developed algorithms to apply to partial sequences of 

human and insect CYPs in an attempt to infer the phylogeny of the full-length 

genes. Although this was successful to a degree, the optimum regions to use for 

analysis varied between CYP families, so this technique is likely to be more 

applicable to degenerate primer PCR generated fragments (amplifying the same 

region) than the bioinformatically identified fragments in this project. Other 

workers maintain that attempts to classify and name CYPs based on partial 

sequences remain ill advised (Feyereisen 2010). 

In spite of the ongoing difficulties in assembling the H. contortus CYP family, the 

work outlined in Chapters 3 and 4 developed an assay to examine the expression 

of a large number of CYPs and revealed differences in constitutive expression 

between life stages, sexes and tissues. As shown in Chapter 4, the characteristic 

expression patterns of H. contortus CYP tags allowed a number to be assembled 

as single genes. It was also apparent that the expression patterns observed in H. 

contortus CYPs may relate closely to the expression patterns of their putative 

orthologues in C. elegans. Conserved CYPs are likely to fit the ‘phylogenetically 

stable’ gene classification, residing in small families and with roles in essential 

pathways. 

Results regarding the putative role of CYPs in the resistance of H. contortus to 

anthelmintic treatment remain unclear, but the high intestinal expression would 

be supportive of a role in xenobiotic metabolism. In contrast to the findings of 

Kotze (2000), where no increase in CYP activity was detected in a resistant 

isolate, this project found that a small number of CYPs appear to more highly 

expressed in anthelmintic resistant isolates. The functional relevance of this up-

regulation has not been tested. The inclusion of the CYP inhibitor piperonyl 

butoxide might be expected to increase anthelmintic efficacy in resistant 

isolates if CYP up-regulation is a mode of resistance. However, previous studies 

of this nature in different species have yielded mixed results. In TBZ-resistant 

Fasciola hepatica, piperonyl butoxide has been shown to decrease TBZ 
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resistance in TBZ-resistant isolates but to have no effect on the efficacy of the 

drug in susceptible isolates (Devine et al 2010). Conversely, Sargison et al (2010) 

found that inhibition of CYP activity with piperonyl butoxide increased IVM 

resistance in IVM-resistant and MXD-resistant isolates of T. circumcinta but not 

in an IVM-susceptible isolate. Despite the apparent incongruity of the effect of 

piperonyl butoxide on resistant parasites, the consistent lack of effect on 

susceptible parasites is suggestive of a difference in CYP expression associated 

with resistance. In addition to the CYPs with higher expression in resistant 

isolates, this project found a number of CYPs with lower expression, although in 

some cases this may be due to between-isolate polymorphism at the primer 

binding sites. Therefore, the mixed results from piperonyl butoxide studies 

might reflect roles of both CYP up-regulation and CYP down-regulation in 

anthelmintic resistance or may reflect differing effects of piperonyl butoxide 

itself, as although it is generally accepted as a CYP inhibitor, it has been shown 

to induce specific CYPs in insects (Feyereisen 2005). 

A more directed future approach might include over-expressing individual CYPs 

shown to have higher constitutive expression in resistant isolates of H. contortus 

in transgenic C. elegans. If a CYP construct conferred anthelmintic resistance to 

C. elegans, it would be supportive of a role in H. contortus anthelmintic 

resistance. The most likely candidate gene from this project would be Hc-cyp-

tag94 due to the relative consistency of its up-regulation in the anthelmintic-

resistant MHco10 (CAVR) isolate between biological replicates, its low 

constitutive expression in the anthelmintic-susceptible MHco3 (ISE) isolate and 

the clustering of other CYP genes at its locus. Interestingly, it was not shown to 

be more highly expressed in the anthelmintic-resistant MHco4 (WRS) isolate, 

suggesting (if this gene confers resistance) that the different isolates have 

evolved different mechanisms of resistance. The application of other standard 

methods to test the functional importance of candidate CYP genes may currently 

be more limited: analysis of the rescue of C. elegans loss-of-function mutants or 

the rescue of RNAi-treated C. elegans, would require the identification of C. 

elegans orthologues, which based on knowledge of xenobiotic-metabolising CYP 

families in other species may be difficult; and although a mechanism for RNAi 

also exists in H. contortus, which would theoretically allow direct analysis of 

gene suppression in the parasite, it is currently unreliable (Geldhof et al 2007). 



Chapter 6: General Discussion  154 

RNA-seq transcriptome analysis was also investigated as a method to assay CYP 

expression and as a global approach to identify genes conferring resistance in H. 

contortus. Although the comparison of CYP gene expression by RNA-seq was 

limited by poor coverage in this study, it is hoped that this could be overcome 

with future work. Attempts were made to normalise the cDNA libraries using a 

hybridisation protocol (Trimmer, Evrogen, NK001) to select for rare transcripts 

before Illumina sequencing. Briefly, the double stranded cDNA was denatured 

and allowed to re-associate. Hybridisation kinetics result in the abundant 

transcripts hybridising, while the rare transcripts remain as single strands. A 

double-strand specific nuclease was then added to degrade the hybridised 

(abundant) DNA, leaving the rare single-strand transcripts intact for PCR 

amplification. Preliminary attempts to use this method in the present study were 

unsuccessful, but if the protocol is optimised for Illumina libraries and for H. 

contortus cDNA, it should theoretically generate a greater depth of reads to map 

to the CYP family. 

Another problem for CYP RNA-seq was the risk of reads mapping to more than 

one locus, an inherent problem in transcriptome analysis of a gene family 

sharing high sequence identity. However, over the course of this project, the 

RNA-seq mapping algorithms were improved significantly, allowing a greater 

number of previously ambiguous reads to be mapped based on mate pair 

information. Further progress with the genome project will also facilitate RNA-

seq mapping. Reads in this project were mapped to the supercontig and BAC 

insert databases. The latter is expected to accurately reflect the genomic 

sequence but the former includes gaps and allelic sequence, both of which will 

reduce the number of reads that can be mapped. When the reference sequence 

assembly is improved, the coverage and accuracy of RNA-seq will improve. The 

transcriptome read databases generated in this project remain a valuable 

resource for when that time comes.  

It is possible that, if genomic sequence was generated for the resistant isolates 

MHco4 (WRS) and MHco10 (CAVR), RNA-seq would reveal a high number of reads 

mapping to a CYP that is divergent from the genomic CYP sequence of the 

reference isolate used to map all reads in this project and hence missed in this 

study. Again, should such resources become available, the transcriptome 

databases generated with this work will be immediately applicable. 
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Work is currently underway at The Wellcome Trust Sanger Institute in the de 

novo assembly of the H. contortus transcriptome read databases. This should 

facilitate the comparison of gene expression between the adult and L3 stage and 

between anthelmintic-susceptible and anthelmintic-resistant isolates and will be 

independent of a fully assembled reference genome. The applicability to the 

CYP family may remain limited, due to low expression levels and complexities of 

CYP gene assembly, but again it is possible that a highly expressed divergent CYP 

could be identified in a resistant isolate de novo assembly. 

Other workers in the Gilleard group in collaboration with the Moredun Research 

Institute (Dr Neil Sargison and Dr Frank Jackson) have recently generated two 

anthelmintic-resistant H. contortus isolates from backcrosses of anthelmintic-

susceptible and –resistant isolates. These were created from a backcross of 

MHco3 (ISE) and MHco4 (WRS) adult worms and a backcross of MHco3 (ISE) and 

MHco10 (CAVR) adult worms. Transcriptome analysis will be undertaken to 

compare gene expression between the susceptible parent isolate (the 

transcriptome generated in this project) and the resistant backcross isolates. 

Theoretically, this should allow the susceptible genetic background to be 

subtracted, revealing the resistance-associated genes. It is hoped that work with 

the backcross isolates should also overcome or at least significantly reduce the 

challenge of between-isolate polymorphism experienced in this project, allowing 

a larger majority of reads from the backcross isolates to be mapped to genomic 

sequence of the reference (susceptible) isolate. Indeed a lack of reads mapping 

to a site might be indicative of a resistance-associated polymorphism. Again, the 

status of the reference genome will impact on the success of RNA-seq read 

mapping and de novo transcriptome assembly might be a worthwhile approach. 

Transcriptome analysis of the backcross isolates will begin next month. 

Should the CYP family be implicated in anthelmintic resistance in H. contortus, 

potential mechanisms would include: a change in the CYP promoter or 

associated NR resulting in gene up-regulation, one or more gene duplications 

resulting in higher CYP expression, or a change in structure affecting CYP 

activity. As described by Feyereisen (2010), polymorphisms provide the variation 

upon which selection for resistance to xenobiotics can act and the CYP family in 

H. contortus certainly appears to be highly polymorphic (numerous alleles of the 

same genes), rapidly evolving (numerous recent gene duplications) or perhaps 
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most likely a combination of both. The true extent of both of these factors will 

remain unknown until there is a fully assembled genome.  

For this parasite in particular, the significance of polymorphisms identified in 

candidate genes such as the CYPs must also be considered in context: the H. 

contortus genome shows a remarkably high degree of polymorphism globally. 

This almost certainly facilitates the rapid selection for drug resistance on 

exposure to new anthelmintics and thus ensures the success of H. contortus as a 

parasite, but is also likely to be observed at many loci that do not directly 

confer resistance. For instance, IVM-resistance in H. contortus has been 

associated with polymorphisms in numerous genes associated with drug 

resistance or metabolism in other species, such β-tubulin, the GSTs, PGPs, GABA 

and GluCl channels (Blackhall et al 1998b,Blackhall et al 1998a,Blackhall et al 

2003, Eng et al 2006, Xu et al 1998). While it is possible and likely that IVM-

resistance is multi-genic, the plasticity of the whole genome may complicate the 

detection of the most significant mutations. Again, functional studies with 

transgenic C. elegans are likely to be useful in confirming the degree of 

resistance conferred by each. 

A high level of polymorphism also presents a significant bioinformatic challenge, 

as demonstrated by the current difficulties in assembling the genome (which 

perhaps further ensures the success of H. contortus as a parasite). It is hoped 

however, that new sequencing technology will evolve more rapidly than the 

parasite and will overcome this. The speed and relatively low cost of NGS should 

allow a high depth of short reads to be generated, which could be forced into a 

consensus genome assembly. Alternatively, new ‘third generation’ sequencing 

technology has been recently released, capable of producing very long single 

reads of up to 10 Kb (McCarthy 2010). This would be ideal for repetitive 

sequence and, for instance, loci of clustered CYP genes in the H. contortus 

genome and would significantly reduce the burden of assembly. It is likely that a 

combination of both of these approaches would be useful for this genome. The 

results of this project also suggest the genome size may be larger than 

previously estimated, which may be a confounding factor in the difficulties with 

the current genome assembly, but again is imminently solvable with further 

sequencing. 
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Nonetheless, as demonstrated by this project, the current WTSI H. contortus 

reference genome databases are a valuable resource. They permit bioinformatic 

analysis and facilitate molecular biological investigation, supported by the 

complete C. elegans genome. It is hoped that the H. contortus transcriptome 

databases generated with this work will provide a useful addition to this public 

resource and contribute to a better understanding of this intriguing parasitic 

genome.
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Appendices 

6.1 RT-QPCR primers and typical reaction efficienci es for 

MHco3 (ISE) adult cDNA 

An asterisk indicates the efficiency was calculated from MHco3 (ISE) L3 data due 

to lack of adult expression 

Primer Sequence Tm  cDNA Product Efficiency 
 (5’-3’) (oC) (bp) (%) 
     
Hc-ama      
Hc-ama-F2 tatgggaggtcgtgaaggtc 60 214 101.1 
Hc-ama-R2 gtgggcttcatagtgggcata 61 214  
     
Hc-act     
Hc-actF2 gggtttgctggagatgacg 60 180 100.1 
Hc-actR2 ccagttggtgacgattccg 60 180  
     
Hc27     
Hc27F1 gtctcggttgacttgcacag 60 199 112.2 
Hc27R1 cggacaacaaggtgctccat 60 199  
     
gtp-ch-1     
gtp-ch-1F1 ggctgcgaaagcgatgttg 60 180 102.1 
gtp-ch-1R1 cagatacccgatgtgcacc 60 180  
     
Hc-nhr     
Hc-nhrF2 ctgaaggagagctgtgaggt 60 185 103.1 
Hc-nhrR2 tccgttatacagtctcttggc 60 185  
     
Hc-pgp     
Hc-pgpF3 tccaagaagcgtgccgtgt 60 181 101.9 
Hc-pgpR3 gcactggtggcttcatcga 60 181  
     
Hc-cyp-tag1     
Hc-cyp-tag1F1 actcgattactggaagcggc 60 178 98.9 
Hc-cyp-tag1R1 tcgctgattacaatcgtccgt 60 178  
     
Hc-cyp-tag2     
Hc-cyp-tag2F1 cgtgtcgtcacttctagcct 60 204 100.9 
Hc-cyp-tag2R1 gcgaatcatatcaacatcgctg 60 204  
     
Hc-cyp-tag3     
Hc-cyp-tag3F1 tgagatttctccactgctgtg 60 184 93.5 
Hc-cyp-tag3R1 cttctacgtcgtctccccat 60 184  
     
Hc-cyp-tag4     
Hc-cyp-tag4F2 ggaacctgcattgtcatcga 60 181 99.8 
Hc-cyp-tag4R2 atctccataagtgcgaatcgc 60 181  
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Hc-cyp-tag5     
Hc-cyp-tag5F1 ctgaaacgacggtgaggtct 60 135 98.0 
Hc-cyp-tag5R1 gcaatgatgtcataccgcctga 60 135  
     
Hc-cyp-tag6     
Hc-cyp-tag6F1 tggactgaatcgacggagag 60 167 97.6 
Hc-cyp-tag6R1 agcggaatcacctcggtatc 60 167  
     
Hc-cyp-tag8     
Hc-cyp-tag8F1 gtcacaaagcatttaacgcgg 60 132 71.2 
Hc-cyp-tag8R1 tctgctgtactcgaggattct 60 132  
     
Hc-cyp-tag9     
Hc-cyp-tag9F1 gagagctgaaacatccctatg 60 196 98.2 
Hc-cyp-tag9R2 aacgcacacggagatgtcg 60 235  
     
Hc-cyp-tag10     
Hc-cyp-tag10F2 cctgccgatcaacctgcta 60 167 31.1 
Hc-cyp-tag10R2 ccgtcgtccgtaaggaatc 60 167  
     
Hc-cyp-tag11     
Hc-cyp-tag11F1 tctccttctgcacattccaca 60 195 95.9 
Hc-cyp-tag11R1 acgtgctcatccaagaccg 60 195  
     
Hc-cyp-tag12     
Hc-cyp-tag12F1 aaggcgttcatgttcgttctg 60 194 97.3 
Hc-cyp-tag12R1 tttccgatatgcactgctcca 60 194  
     
Hc-cyp-tag13     
Hc-cyp-tag13F1 cttactgggtgaaacgaggc 60 126 101.0 
Hc-cyp-tag13R1 ccgtaggtatttccatattctgc 58 126  
     
Hc-cyp-tag14     
Hc-cyp-tag14F1 cgcttacttgctgtatcatcc 60 166 94.0 
Hc-cyp-tag14R1 ggaatagcccatggtagaaca 60 166  
     
Hc-cyp-tag15     
Hc-cyp-tag15F2 tgcgtaaattgggcgctgatc 61 159 110.0 
Hc-cyp-tag15R2 gacgaccgatacagttctcag 61 159  
     
Hc-cyp-tag16     
Hc-cyp-tag16F3 tgctgggatggagactacct 60 162 107.5 
Hc-cyp-tag16R3 gcattggtgtaaggcagacg 60 162  
     
Hc-cyp-tag17     
Hc-cyp-tag17F3 ggaaacgaaggaatctaccac 60 209 96.5 
Hc-cyp-tag17R3 agcaccatccttgactaacgt 60 209  
     
Hc-cyp-tag18     
Hc-cyp-tag18F1 cgtcgatacatgaggaaatgga 60 190 98.3 
Hc-cyp-tag18R1 tgcctgacgggatatggtag 60 190  
     
Hc-cyp-tag20     
Hc-cyp-tag20F1 gctacggctcactccatca 60 179 94.7 
Hc-cyp-tag20R1 tggatagtattcttcgggacg 60 179  
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Hc-cyp-tag21     
Hc-cyp-tag21F1 ggttcgtcagatcgcagttg 60 191 106.5 
Hc-cyp-tag21R1 cgtgaatcatggcaggcgt 60 191  
     
Hc-cyp-tag23     
Hc-cyp-tag23F1 cgaccaggaccaagccc 60 201 83.6* 
Hc-cyp-tag23R1 tcgccttgttagcttcttgaaa 58 201  
     
Hc-cyp-tag24     
Hc-cyp-tag24F1 cgtaatcgttggcagcgtga 60 186 94.2 
Hc-cyp-tag24R1 cttctctccggtctttctcc 60 186  
     
Hc-cyp-tag25     
Hc-cyp-tag25F1 gctgtgcatactgtcaacgat 60 170 104.1 
Hc-cyp-tag25R1 cctgctcctggatctcgc 61 170  
     
Hc-cyp-tag27     
Hc-cyp-tag27F1 gaggttcgctgtgatggaag 60 150 100.8 
Hc-cyp-tag27R1 tcgcctttctataatcagtggg 60 150  
     
Hc-cyp-tag28     
Hc-cyp-tag28F1 aatacggtcccgtccatactt 60 181 70.3 
Hc-cyp-tag28R1 gcaaagcgacgctgttctac 60 181  
     
Hc-cyp-tag29     
Hc-cyp-tag29F1 gctgtggctaccgtatccta 60 187 98.7* 
Hc-cyp-tag29R1 cagcgtatggagtgtgaatc 58 187  
     
Hc-cyp-tag30     
Hc-cyp-tag30F1 ggctggtatggagacgact 60 165 95.5 
Hc-cyp-tag30R1 tcacccctctaaccgaagtat 60 165  
     
Hc-cyp-tag32     
Hc-cyp-tag32F1 cctgccctgattctgttcct 60 195 84.3 
Hc-cyp-tag32R1 ggaagccagacagtgaagac 60 195  
     
Hc-cyp-tag33     
Hc-cyp-tag33F2 tattacggatttcgatggtgtc 58 120 91.5* 
Hc-cyp-tag33R2 ccatcaagttcttccccattc 60 120  
     
Hc-cyp-tag34     
Hc-cyp-tag34F1 cgatagaaatgacaaggcagac 60 163 102.0 
Hc-cyp-tag34R1 aaggtgtcagctgggatagg 60 163  
     
Hc-cyp-tag35     
Hc-cyp-tag35F1 tggtttggctgtactatgagaa 60 178 98.0 
Hc-cyp-tag35R1 cagctataaccacatgcggc 60 178  
     
Hc-cyp-tag36     
Hc-cyp-tag36F1 tactcggcgagatccacca 60 169 105.2* 
Hc-cyp-tag36R1 ccaacgcctctcctgcacat 60 169  
     
Hc-cyp-tag37     
Hc-cyp-tag37F1 ccttgatttatggtttgctggg 60 176 91.6 
Hc-cyp-tag37R1 agcattggtgtaaggcagact 60 176  
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Hc-cyp-tag38     
Hc-cyp-tag38F1 atatggcgtcgtggaaaccg 60 136 103.6 
Hc-cyp-tag38R1 ataactgatccaacggccact 60 136  
     
Hc-cyp-tag40     
Hc-cyp-tag40F1 gaatgtctgcctggacctgt 60 173 69.9 
Hc-cyp-tag40R1 atggaggtgattcttgtcagc 60 173  
     
Hc-cyp-tag41     
Hc-cyp-tag41 gcccttgccatatctgttttc 60 212 99.3 
Hc-cyp-tag41 aaactcttgtcatcctgtctcg 60 212  
     
Hc-cyp-tag42     
Hc-cyp-tag42F1 acactaagcgctatcccaaag 60 182 95.9 
Hc-cyp-tag42R1 aatgcctctttgacaccatcg 60 182  
     
Hc-cyp-tag43     
Hc-cyp-tag43F1 gccatagctaacggaactcac 61 171 106.4 
Hc-cyp-tag43R1 gtgatagtagtttcttgaccagc 61 171  
     
Hc-cyp-tag44     
Hc-cyp-tag44F2 ggtctaattgaaggaaacggg 60 184 81.4* 
Hc-cyp-tag44R2 ctagccaccacagtaaaac 60 184  
     
Hc-cyp-tag46     
Hc-cyp-tag46F1 ggaccacctccttacccatt 60 165 103.1 
Hc-cyp-tag46R1 acgaatgcctctttgactcca 60 165  
     
Hc-cyp-tag47     
Hc-cyp-tag47F1 cccgttgccacggtacag 61 160 97.7 
Hc-cyp-tag47R1 tcgtcgctgctccgtcca 61 160  
     
Hc-cyp-tag51     
Hc-cyp-tag51F2 gtgggatcgtgagcggc 60 171 80.5 
Hc-cyp-tag51R2 ggtttcctatgcgggtcc 60 171  
      
Hc-cyp-tag54     
Hc-cyp-tag54F1 gtttgctgcccttattctgttc 60 199 101.9 
Hc-cyp-tag54R1 ggaagccagacagtgaagac 60 199  
     
Hc-cyp-tag55     
Hc-cyp-tag55F1 aactgttgacgcccactttc 58 169 114.0 
Hc-cyp-tag55R1 ccgcttcgcagatgacatct 60 169  
     
Hc-cyp-tag56     
Hc-cyp-tag56F1 gacctgtggatcgctggaa 60 158 104.5 
Hc-cyp-tag56R1 ggaggtaagtcttgtcagcc 60 158  
     
Hc-cyp-tag58     
Hc-cyp-tag58F1 gctacaaactgcgaaagggt 58 176 101.2 
Hc-cyp-tag58R1 ctcccaagcacgctcgtt 58 176  
     
Hc-cyp-tag60     
Hc-cyp-tag60F1 ccgtcagagaggatgtgga 60 153 100.1 
Hc-cyp-tag60R1 catcgaagagttgtggctgta 60 153  
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Hc-cyp-tag61     
Hc-cyp-tag61F2 gtcgcgctccctttcatc 58 173 97.9 
Hc-cyp-tag61R2 gcttcgcattcttctggtcc 60 173  
     
Hc-cyp-tag62     
Hc-cyp-tag62F1 cttctacttggctggtatgga 60 158 96.4 
Hc-cyp-tag62R1 aggtaatttctgccgatctgac 60 158  
     
Hc-cyp-tag63     
Hc-cyp-tag63F1 cgtcttcactgtctggcttc 60 188 102.0 
Hc-cyp-tag63R1 cgccgttgttccttccaga 60 188  
     
Hc-cyp-tag64     
Hc-cyp-tag64F1 cttcacggcttactcgatcaa 60 182 97.3* 
Hc-cyp-tag64R1 gacttctcgcgatgctcct 60 182  
     
Hc-cyp-tag65     
Hc-cyp-tag65F1 cggcgacgacttccacc 60 173 79.2* 
Hc-cyp-tag65R1 cgacggtaaatctccaaccat 60 173  
     
Hc-cyp-tag67     
Hc-cyp-tag67F1 cagcaggaaaatcgtcttacag 60 166 106.6 
Hc-cyp-tag67R1 accgattacttccttgacctct 60 166  
     
Hc-cyp-tag69     
Hc-cyp-tag69F1 atcggttcagttcctgttcca 60 187 108.1 
Hc-cyp-tag69R1 cattccttctccgacgcac 60 187  
     
Hc-cyp-tag70     
Hc-cyp-tag70F1 ggatatgaacgcaaaaggagag 60 166 112.3 
Hc-cyp-tag70R1 ctcatcgacttcacgttgtac 60 166  
     
Hc-cyp-tag71     
Hc-cyp-tag71F1 cactttacggacattacggga 60 188 70.5 
Hc-cyp-tag71R1 gattcgattgataacactgccg 60 188  
     
Hc-cyp-tag72     
Hc-cyp-tag72F1 tcgaaccaaggaaggcaaac 60 201 110.2 
Hc-cyp-tag72R1 caccgagacatgaccgtttc 60 201  
     
Hc-cyp-tag73     
Hc-cyp-tag73F1 aggtggctcaggaattggtg 60 161 109.5 
Hc-cyp-tag73R1 agcccattcaatgcgatcagt 60 161  
     
Hc-cyp-tag74     
Hc-cyp-tag74F1 cccctatgcttgtctacaac 58 201 93.9 
Hc-cyp-tag74R1 atatctactggtgtgccagc 58 201  
     
Hc-cyp-tag75     
Hc-cyp-tag75F1 gcttctcgccagcaggattt 60 176 110.3 
Hc-cyp-tag75R1 aagtgtctcataggtctgttcg 60 176  
     
Hc-cyp-tag76     
Hc-cyp-tag76F1 ctcgcattccaaccaagtagat 60 206 83.3* 
Hc-cyp-tag76R1 gtgtctcataggtctgttcgat 60 206  
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Hc-cyp-tag77     
Hc-cyp-tag77F1 tctctccttctgcacattctac 60 195 94.5 
Hc-cyp-tag77R1 tgctcatccgaaaccggg 58 195  
     
Hc-cyp-tag80     
Hc-cyp-tag80F1 ggccagaggtttgctgtgat 60 162 101.0 
Hc-cyp-tag80R1 ctcagttcgcttttcaataatcag 60 162  
     
Hc-cyp-tag81     
Hc-cyp-tag81F1 gcgacagattacgtggcag 60 154 107.5 
Hc-cyp-tag81R1 ctccccatgaaagcgtgttg 60 154  
     
Hc-cyp-tag86     
Hc-cyp-tag86F1 tgagtggatacggtttcgagt 60 186 105.7 
Hc-cyp-tag86R1 cctcatcactcaactggttag 60 186  
     
Hc-cyp-tag88     
Hc-cyp-tag88F1 caagaagtctatcgtgctggc 58 167 107.6 
Hc-cyp-tag88R1 atgattagttccggtcgagg 58 167  
     
Hc-cyp-tag89     
Hc-cyp-tag89F1 ggaggaatggggacgacaat 60 147 102.8 
Hc-cyp-tag89R1 ccggttcctatccaatctga 58 147  
     
Hc-cyp-tag94     
Hc-cyp-tag94F1 gaactggagagaacaacgtc 58 184 103.2 
Hc-cyp-tag94R1 ctcgtttgcagcgtccatca 60 184  
     
Hc-cyp-tag95     
Hc-cyp-tag95F1 gaatctactccacgaaacactt 58 202 104.2 
Hc-cyp-tag95R1 gcccaagcactgacgtttc 60 202  
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6.2 Wellcome Trust Sanger Institute references for CYP 

genomic sequence described in thesis 

SUPERCONTIG CONTIG(S) WTSI DATABASE REFERENCE 
 
1 54 Supercontig_0029042_cw_200808                                     
2 42 Supercontig_0029255_cw_200808  
3 63 Supercontig_0037463_cw_200808  
4 46 Supercontig_0006244_cw_200808                                     
5 50_94_62_36_35 Supercontig_0055835_cw_200808                      
6 60+34_33_49+30 Supercontig_0053015_cw_200808  
7 32_68+69 Supercontig_0059022_cw_200808                                     
8 91_39+38_37 Supercontig_0047793_cw_200808                                     
9 95_56 Supercontig_0024087_cw_200808                                     
10 84 Supercontig_0036329_cw_200808 
11 16 Supercontig_0000158_cw_200808                                     
12 81 Supercontig_0022776_cw_200808  
13 45 Supercontig_0004472_cw_200808                  
14 40 Supercontig_0000588_cw_200808  
15 22_14 Supercontig_0053000_cw_200808                      
16 65+64 Supercontig_0058211_cw_200808          
17 82 Supercontig_0024845_cw_200808 
18 10 Contig_0080247 (12/11/07) 
19 66 Supercontig_0055713_cw_200808                                     
20 7 Supercontig_0008400_cw_200808  
21 90_19 Supercontig_0029120_cw_200808                
22 78 Supercontig_0009042_cw_200808 
23 8 Supercontig_0041241_cw_200808               
24 79 Supercontig_0018164_cw_200808  
25 2_6 Supercontig_0047659_cw_200808 
26 1_ 5 Supercontig_0047698_cw_200808        
27 51_92_93 Supercontig_0057680_cw_200808         
28 20 Supercontig_0016742_cw_200808                                     
29 44 Supercontig_0012299_cw_200808                  
30 89 Supercontig_0050076_cw_200808  
31 86_87 Supercontig_0044030_cw_200808   
32 80 Supercontig_0022729_cw_200808   
33 53_67 Supercontig_0059036_cw_200808                  
34 25+15 Supercontig_0057952_cw_200808                           
35 12_13 Supercontig_0058664_cw_200808                             
36 27 Supercontig_0059583_cw_200808                      
37 17_18 Supercontig_0036840_cw_200808         
38 47+48 Supercontig_0006640_cw_200808                      
39 57 Supercontig_0046553_cw_200808 
40 43 Supercontig_0023588_cw_200808 
41 71+72 Supercontig_0057401_cw_200808                   
42 24+23+52 Supercontig_0059253_cw_200808                           
43 28 Supercontig_0055649_cw_200808  
44 26 Supercontig_0004356_cw_200808          
45 59+58 Supercontig_0016803_cw_200808                   
46 88 Supercontig_0045832_cw_200808 
47 29 Supercontig_0039964_cw_200808    
48 21_96 Supercontig_0057945_cw_200808                           
49 41 Supercontig_0004463_cw_200808  
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50 61 Supercontig_0046836_cw_200808  
51 9_70 Supercontig_0058643_cw_200808          
52 55 Supercontig_0042738_cw_200808  
53 4 Supercontig_0001791_cw_200808  
54 77 Supercontig_0000221_cw_200808  
55 11+3 Supercontig_0052968_cw_200808           
56 85 Supercontig_0038404_cw_200808    
57 76 Supercontig_0035762_cw_200808 
58 75 Contig_0022272 (12/11/07) 
59 76 Contig_0031347 (12/11/07) 
60 73+74 Supercontig_0036826_cw_200808                   
61 83 Supercontig_0027055_cw_200808 
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