151 research outputs found

    Multiple inverse problem

    Get PDF
    The problem of providing the required level of quality of products and/or technological processes often becomes difficult due to the fact that there is no general theory for determining optimal sets of values of primary factors, i.e. output parameters of parts and units comprising an object as well as ensuring the equivalence of object parameters to the quality requirements. This is the main reason why the development of complex systems and objects of vital importance takes several years. To create this theory, one has to overcome a number of difficulties and solve the following tasks: creation of reliable and stable mathematical models that indicate the influence of primary factors on output parameters; determination of accurate solutions when mathematical models are poorly stipulated; and creation of a method of assigning nominal values and tolerances for primary factors with regard to economical, technological and other criteria. All of the above-listed tasks are equally important. The present work is an attempt to describe a solution for this problem. The mathematically formalized aspect of the problem of providing the required level of quality has been called the β€œmultiple inverse problem”

    Identification of Physical and Mechanical Properties of Compound by Solving Inverse Problems

    Get PDF
    The paper presents a method of identification of physical and mechanical characteristics of the compound (calculated and experimental test method parameters). The idea of the method is that the studied material is connected with other materials, the characteristics of which are well known and differ from the characteristics of the material. Desired physical and mechanical properties should be considered unknown in the proposed calculation model, and the values of the parameters of trial constructions that can be measured accurately with experimental methods in the process of product operation, as well as characteristics of test materials and geometric dimensions of proposed structures are suggested to be placed in the same model as input information

    Acoustic emission and methods of its registration (review)

    Get PDF
    Lately a tendency is observed for the steady growth of requirements applied both to construction materials as well as to the methods of estimation of their reliability and quality. Particular attention is paid to the development of new, physically reasonable criteria of structural durability of materials, based on comprehensive study of the phenomena, which form the basis of processes of deformation and fracture. Such approach is supposed to enhance our understanding of the nature of durability and mechanisms of fracture of materials on different scale levels. This is possible only when analysis of these phenomena is accomplished by means of modern physical research methods as well as applying acoustic emission techniques for diagnostics of the fractures

    Calculation of mechanical stresses in adjoint system of electronic component and compound and strength assessment

    Get PDF
    The paper represents mathematical model and formulas developed for project calculations which are applied to sealed electronic units and provide assessing strength of passive electronic components having revolution shape (capacitors, resistors, diodes, pins, etc.). The stress calculation has been produced for materials of resistor and compound in the temperature interval (from –60 to +70Β°C) along the radius of resistor and compound

    Methods for testing and optimizing composite ceramics-compound joints by solving inverse problems of mechanics

    Get PDF
    The paper demonstrates methods for testing and selecting composite ceramics-compounds by solving inverse problems of mechanics. A method for the identification of physical and mechanical characteristics of the compound is proposed. The idea of the method is that the studied material is connected with other materials, the characteristics of which are well known and differ from the characteristics of the material. Desired physical and mechanical properties should be considered unknown in the proposed calculation model. Values of the parameters can be measured accurately with experimental methods in the process of product operation. Characteristics of test materials and geometric dimensions of proposed structures are suggested. The solution of the problem of optimizing the tolerances of physical and mechanical characteristics of materials is proposed. In order to ensure the strength of the structure, the geometric dimensions of the composite construction ceramic resistor-compound are suggested

    Acoustic emission and methods of its registration (review)

    Get PDF
    Lately a tendency is observed for the steady growth of requirements applied both to construction materials as well as to the methods of estimation of their reliability and quality. Particular attention is paid to the development of new, physically reasonable criteria of structural durability of materials, based on comprehensive study of the phenomena, which form the basis of processes of deformation and fracture. Such approach is supposed to enhance our understanding of the nature of durability and mechanisms of fracture of materials on different scale levels. This is possible only when analysis of these phenomena is accomplished by means of modern physical research methods as well as applying acoustic emission techniques for diagnostics of the fractures

    Calculation of mechanical stresses in adjoint system of electronic component and compound and strength assessment

    Get PDF
    The paper represents mathematical model and formulas developed for project calculations which are applied to sealed electronic units and provide assessing strength of passive electronic components having revolution shape (capacitors, resistors, diodes, pins, etc.). The stress calculation has been produced for materials of resistor and compound in the temperature interval (from –60 to +70Β°C) along the radius of resistor and compound

    Interaction of the Retinoblastoma Protein with Orc1 and Its Recruitment to Human Origins of DNA Replication

    Get PDF
    Background: The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. Methodology/Principal Findings: Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by specifically binding to origins of DNA replication in a cell cycle regulated manner. We show that, both in vitro and inside the cells, the largest subunit of the origin recognition complex (Orc1) specifically binds hypo-phosphorylated Rb and that this interaction is competitive with the binding of Rb to E2F1. The displacement of Rb-bound Orc1 by E2F1 at origins of DNA replication marks the progression of the G1 phase of the cell cycle toward the G1-S border. Conclusions/Significance: The participation of Rb and E2F1 in the formation of the multiprotein complex that binds origins of DNA replication in mammalian cells appears to represent an effective mechanism to couple the expression of gene

    Context-Dependent Requirement for dE2F during Oncogenic Proliferation

    Get PDF
    The Hippo pathway negatively regulates the cell number in epithelial tissue. Upon its inactivation, an excess of cells is produced. These additional cells are generated from an increased rate of cell division, followed by inappropriate proliferation of cells that have failed to exit the cell cycle. We analyzed the consequence of inactivation of the entire E2F family of transcription factors in these two settings. In Drosophila, there is a single activator, dE2F1, and a single repressor, dE2F2, which act antagonistically to each other during development. While the loss of the activator dE2F1 results in a severe impairment in cell proliferation, this defect is rescued by the simultaneous loss of the repressor dE2F2, as cell proliferation occurs relatively normally in the absence of both dE2F proteins. We found that the combined inactivation of dE2F1 and dE2F2 had no significant effect on the increased rate of cell division of Hippo pathway mutant cells. In striking contrast, inappropriate proliferation of cells that failed to exit the cell cycle was efficiently blocked. Furthermore, our data suggest that such inappropriate proliferation was primarily dependent on the activator, de2f1, as loss of de2f2 was inconsequential. Consistently, Hippo pathway mutant cells had elevated E2F activity and induced dE2F1 expression at a point when wild-type cells normally exit the cell cycle. Thus, we uncovered a critical requirement for the dE2F family during inappropriate proliferation of Hippo pathway mutant cells
    • …
    corecore