10 research outputs found

    Effects of various salt challenges on mean blood pressure and heart rate in C57BL/6N male mice.

    No full text
    <p>Mice were monitored with telemetry and placed in a standard (A, C) or modified light/dark cycle (B, D). NS = normal salt diet (n = 12 and n = 17, for the standard and modified light cycle respectively), LS = low salt diet (n = 11 and n = 15, for the standard and modified light cycle respectively), HS = high Na<sup>+</sup>/normal K<sup>+</sup> diet (n = 5 and n = 6, for the standard and modified light cycle respectively). One-way ANOVA per light phase followed by Tukey’s post-hoc test; *: p<0.05 compared to NS diet.</p

    Comparison between C57BL/6N and C57BL/6J for their mean blood pressure and heart rate responses to various salt challenges.

    No full text
    <p>Mice were monitored with telemetry during the dark (A, B) and light (C) periods of a modified light/dark cycle. NS = normal salt diet (n = 17 and n = 17, for C57BL/6N and C57BL/6J respectively), LS = low salt diet (n = 15 and n = 17, for C57BL/6N and C57BL/6J respectively), HS = high Na<sup>+</sup>/normal K<sup>+</sup> diet (n = 8 and n = 8, for C57BL/6N and C57BL/6J respectively) and HS/LK = high Na<sup>+</sup>/low K<sup>+</sup> diet (n = 6 and n = 9, for C57BL/6N and C57BL/6J respectively). One-way ANOVA per light phase followed by Tukey’s post-hoc test; *: p<0.05 compared to NS diet; #: p<0.05 HS/LK compared to HS.</p

    Effects of high-salt/normal potassium and high-salt/low potassium on mean blood pressure and heart rate in C57BL/6N mice.

    No full text
    <p>Mice were monitored with telemetry in the dark (A, B, C) and light (C) periods of a modified light/dark cycle. NS = normal salt diet (n = 17), LS = low salt diet (n = 15), HS = high Na<sup>+</sup>/normal K<sup>+</sup> diet (n = 8) and HS/LK = high Na<sup>+</sup>/low K<sup>+</sup> diet (n = 6). One-way ANOVA per light phase followed by Tukey’s post-hoc test; *: p<0.05 compared to NS diet; #: p<0.05 HS/LK compared to HS.</p

    Comparison between C57BL/6N and C57BL/6J for their systolic blood pressure and heart rate responses to various salt challenges measured by NIBP.

    No full text
    <p>Measurements were made during the dark periods of a modified light/dark cycle. NS = normal salt diet (n = 20 and n = 20, for C57BL/6N and C57BL/6J respectively), LS = low salt diet (n = 20 and n = 20, for C57BL/6N and C57BL/6J respectively), HS = high Na<sup>+</sup>/normal K<sup>+</sup> diet (n = 9 and n = 10, for C57BL/6N and C57BL/6J respectively) and HS/LK = high Na<sup>+</sup>/low K<sup>+</sup> diet (n = 9 and n = 10, for C57BL/6N and C57BL/6J respectively). One-way ANOVA per light phase followed by Tukey Kramer’s post-hoc test; #: p<0.05 HS/LK compared to HS.</p

    Effect of high salt diets on the circadian blood pressure variations in C57BL/6N and C57BL/6J mice under a reverse light/dark cycle.

    No full text
    <p>2.5 days continuous telemetric recordings of systolic blood pressure after 2 weeks of NS, HS or HS/LK diet challenge. A) n = 8 per group B) n = 6 per group C) n = 8 per group D) n = 9 per group. Two-way ANOVA followed by Sidak’s post-hoc test *: p<0.05 for interaction.</p

    Regional association plots of the genomic location indicated by the mouse model in the EUGENE2 human study population.

    No full text
    <p>Associations of SNPs rs17030583 and rs2291897 (blue diamonds) to systolic and diastolic blood pressure are plotted with their P-values (as −log10 values) as a function of genomic position (with NCBI build 36). Estimated recombination rates (from Hapmap Phase 3) are plotted to reflect the local LD structure around the associated SNPs and their correlated proxies (red: r<sup>2</sup>≥0.8; orange: 0.5≤r<sup>2</sup><0.8; gray: 0.2≤r<sup>2</sup><0.5; white: r<sup>2</sup><0.2). Diamonds represent directly genotyped markers and circles represent imputed markers.</p

    Mapping of a systolic blood pressure (SBP) quantitative trait locus (QTL) in BXD strains.

    No full text
    <p>(A) Rank ordered mean BP values across 27 male and 21 female BXD strains (with SEM error bars). (B) In males, a significant BP QTL is mapped on chromosome 9. In females, BP QTL maps to the same region on chromosome 9. (C) The genomic region corresponding to the BP QTL on chromosome 9. The LOD score is depicted in blue with the highest values at the position 113.2 to 113.9 Mb achieving LOD of 4.7. Individual genes under the BP QTL peak are indicated. (D) The syntenic chromosomal region in human.</p
    corecore