69 research outputs found

    Effect of Non Unitarity on Neutrino Mass Hierarchy determination at DUNE, NOΜ\nuA and T2K

    Full text link
    The neutrino mass ordering is one of the principal unknowns in the neutrino sector. Long baseline neutrino experiments have the potential of resolving this issue as they are sensitive to large matter effects. The superbeam experiment DUNE is one of the most promising candidates to study the neutrino mass hierarchy, along with NOΜ\nuA and T2K. But in the presence of non unitarity of the leptonic mixing matrix, the capability of such experiments to discriminate between the two hierarchies gets suppressed. The mass hierarchy sensitivity of DUNE decreases in the presence of new physics. In this paper we analyze the origin and extent of this loss of sensitivity at the level of oscillation probabilities, events, mass hierarchy sensitivity and the discovery reach of DUNE, NOΜ\nuA and T2K.Comment: 23 pages, 9 figures, modified version, new text and figure added, accepted for publication in Nuclear Physics

    What measurements of neutrino neutral current events can reveal

    Full text link
    We show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurements provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.Comment: 22 pages, 10 figure

    A smart contract system for decentralized borda count voting

    Get PDF
    In this article, we propose the first self-tallying decentralized e-voting protocol for a ranked-choice voting system based on Borda count. Our protocol does not need any trusted setup or tallying authority to compute the tally. The voters interact through a publicly accessible bulletin board for executing the protocol in a way that is publicly verifiable. Our main protocol consists of two rounds. In the first round, the voters publish their public keys, and in the second round they publish their randomized ballots. All voters provide Non-interactive Zero-Knowledge (NIZK) proofs to show that they have been following the protocol specification honestly without revealing their secret votes. At the end of the election, anyone including a third-party observer will be able to compute the tally without needing any tallying authority. We provide security proofs to show that our protocol guarantees the maximum privacy for each voter. We have implemented our protocol using Ethereum's blockchain as a public bulletin board to record voting operations as publicly verifiable transactions. The experimental data obtained from our tests show the protocol's potential for the real-world deployment

    LSND and MiniBooNE as guideposts to understanding the muon g−2g-2 results and the CDF II WW mass measurement

    Full text link
    In recent times, several experiments have observed results that are in significant conflict with the predictions of the Standard Model (SM). Two neutrino experiments, LSND and MiniBooNE (MB) have reported electron-like signal excesses above backgrounds. Both the Brookhaven and the Fermilab muon g−2g-2 collaborations have measured values of this parameter which, while consistent with each other, are in conflict with the SM. Recently, the CDF II collaboration has reported a precision measurement of the WW-boson mass that is in strong conflict with the SM prediction. It is worthwhile to seek new physics which may underly all four anomalies. In such a quest, the neutrino experiments could play a crucial role, because once a common solution to these anomalies is sought, LSND and MB, due to their highly restrictive requirements and observed final states, help to greatly narrow the multiplicity of new physics possibilities that are otherwise open to the WW mass and muon g−2g-2 discrepancies. Pursuant to this, earlier work has shown that LSND, MB and the muon g−2g-2 results can be understood in the context of a scalar extension of the SM which incorporates a second Higgs doublet and a dark sector singlet. We show that the same model leads to a contribution to the WW mass which is consistent with the recent CDF II measurement. While the LSND, MB fits and the muon g−2g-2 results help determine the masses of the light scalars in the model, the calculation of the oblique parameters SS and TT determines the allowed mass ranges of the heavier pseudoscalar and the charged Higgs bosons as well as the effective Weinberg angle and its new range.Comment: 11 pages, 8 figures, 1 table. Figues and related text added. References adde

    Modelling of hydrogen blending into the UK natural gas network driven by a solid oxide fuel cell for electricity and district heating system

    Get PDF
    A thorough investigation of the thermodynamics and economic performance of a cogeneration system based on solid oxide fuel cells that provides heat and power to homes has been carried out in this study. Additionally, different percentages of green hydrogen have been blended with natural gas to examine the techno-economic performance of the suggested cogeneration system. The energy and exergy efficiency of the system rises steadily as the hydrogen blending percentage rises from 0% to 20%, then slightly drops at 50% H2 blending, and then rises steadily again until 100% H2 supply. The system's minimal levelised cost of energy was calculated to be 4.64 ÂŁ/kWh for 100% H2. Artificial Neural Network (ANN) model was also used to further train a sizable quantity of data that was received from the simulation model. Heat, power, and levelised cost of energy estimates using the ANN model were found to be extremely accurate, with coefficients of determination of 0.99918, 0.99999, and 0.99888, respectively

    Techno-economic analysis of solid oxide fuel cell-based energy systems for decarbonising residential power and heat in the United Kingdom

    Get PDF
    This study examines the feasibility of using hydrogen as a clean energy source for residential consumers in the UK through a low-carbon energy hub. Two cases were compared: a solid oxide fuel cell (SOFC) integrated combined heat and power (CHP) system fuelled by natural gas and hydrogen; and a SOFC–heat pump (HP) integrated CHP system fuelled by natural gas and hydrogen. The study used the actual electricity and heating demands of a UK cluster to model the CHP systems. The results indicate that the SOFC-based CHP system with hydrogen as fuel is more energy-efficient than the natural gas-fuelled system, with energetic efficiencies of 92.12% and 66.98%, respectively. The study also found that the system incorporating a heat pump is more economically viable, regardless of the fuel source, with the hydrogen-powered system equipped with a heat pump having a levelised cost of energy (LCOE) of 0.2984 £ per kW h. The study also evaluated the environmental impact of the natural gas-powered SOFC and SOFC–HP systems, with estimated levelised CO2 emissions of 0.308 kg per kW h and 0.213 kg per kW h, respectively. The study's findings provide insights into the potential of hydrogen as a cleaner energy source for residential consumers in the UK and highlight the importance of exploring low-carbon energy alternatives

    Impact of targeted interventions on heterosexual transmission of HIV in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeted interventions (TIs) have been a major strategy for HIV prevention in India. We evaluated the impact of TIs on HIV prevalence in high HIV prevalence southern states (Tamil Nadu, Karnataka, Andhra Pradesh and Maharashtra).</p> <p>Methods</p> <p>A quasi-experimental approach was used to retrospectively compare changes in HIV prevalence according to the intensity of targeted intervention implementation. Condom gap (number of condoms required minus condoms supplied by TIs) was used as an indicator of TI intensity. Annual average number of commercial sex acts per female sex worker (FSW) reported in Behavioral Surveillance Survey was multiplied by the estimated number of FSWs in each district to calculate annual requirement of condoms in the district. Data of condoms supplied by TIs from 1995 to 2008 was obtained from program records. Districts in each state were ranked into quartiles based on the TI intensity. Primary data of HIV Sentinel Surveillance was analyzed to calculate HIV prevalence reductions in each successive year taking 2001 as reference year according to the quartiles of TI intensity districts using generalized linear model with logit link and binomial distribution after adjusting for age, education, and place of residence (urban or rural).</p> <p>Results</p> <p>In the high HIV prevalence southern states, the number of TI projects for FSWs increased from 5 to 310 between 1995 and 2008. In high TI intensity quartile districts (n = 30), 186 condoms per FSW/year were distributed through TIs as compared to 45 condoms/FSW/year in the low TI intensity districts (n = 29). Behavioral surveillance indicated significant rise in condom use from 2001 to 2009. Among FSWs consistent condom use with last paying clients increased from 58.6% to 83.7% (p < 0.001), and among men of reproductive age, the condom use during sex with non-regular partner increased from 51.7% to 68.6% (p < 0.001). A significant decline in HIV and syphilis prevalence has occurred in high prevalence southern states among FSWs and young antenatal women. Among young (15-24 years) antenatal clinic attendees significant decline was observed in HIV prevalence from 2001 to 2008 (OR = 0.42, 95% CI 0.28-0.62) in high TI intensity districts whereas in low TI intensity districts the change was not significant (OR = 1.01, 95% CI 0.67-1.5).</p> <p>Conclusion</p> <p>Targeted interventions are associated with HIV prevalence decline.</p
    • 

    corecore