301 research outputs found

    QCD and spin effects in black hole airshowers

    Get PDF
    In models with large extra dimensions, black holes may be produced in high-energy particle collisions. We revisit the physics of black hole formation in extensive airshowers from ultrahigh-energy cosmic rays, focusing on collisional QCD and black hole emissivity effects. New results for rotating black holes are presented. Monte Carlo simulations show that QCD effects and black hole spin produce no observable signatures in airshowers. These results further confirm that the main characteristics of black hole-induced airshowers do not depend on the fine details of micro black hole models.Comment: 6 pages, 2 figures, accepted for publication in Physical Review

    Discriminating Supersymmetry and Black Holes at the CERN Large Hadron Collider

    Get PDF
    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the CERN Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of pythia and isajet. Our study, based on event-shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated

    String Resonances at the Large Hadron Collider

    Get PDF
    The Large Hadron Collider promises to discover new physics beyond the standard model. An exciting possibility is the formation of string resonances at the TeV scale. In this article, we show how string resonances may be detected at the LHC in the pp →γ + jet channel. Our study is based on event-shape variables, missing energy and momentum, maximum transverse momentum of photons and dijet invariant mass. These observables provide interesting signatures which enable us to discriminate string events from the standard model background

    Environmental Pursuits In Nanomaterial Systems Science With Indian Exemplars

    Get PDF
    The behavior and pattern of NPs of minerals in the evolutionary history of the earth vis – a –vis the environmental context are inquired into, with a riverine system as a model. The study of fractal dimensions of NPs of interest serves as an aid to obtain a comprehensive view of natural NPs in the model system. The present study combines inputs from work done on nanoparticles, derived from the Subanarekha River System and products of base metal mine effluents that are rich in NPs of minerals. The authors believe this study would help to establish certain universalities about NPs and provide an updated framework for understanding the current state of nanomineral science

    Supersymmetry versus black holes at the LHC

    Full text link
    Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but powerful method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show the measure of the dilepton invariant mass provides a strong signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.Comment: 12 pages, 5 figure

    Restricted probabilistic fixed ballot rules and hybrid domains

    Get PDF

    Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    Get PDF
    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.Comment: 12 pages, 8 figure

    Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    Get PDF
    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain
    • …
    corecore