27 research outputs found

    Athlete Perceptions of Flavored, Menthol-enhanced Energy Gels Ingested Prior to Running in the Heat

    Get PDF
    Thermal perception during exercise is known to influence endurance performance and the onset of fatigue. L-menthol, an organic compound derived from peppermint, evokes a cooling sensation through its action on TRPM8 channels which also respond to cold stimuli. Recent work identified that the internal application of menthol-enhanced fluids can be ergogenic during exercise in the heat. Hence, the addition of menthol to energy gels may be practical and beneficial for athletes. PURPOSE: To determine athlete acceptability and preferences for flavored energy gels with different menthol concentrations. METHODS: With a randomized, crossover, and double-blind placebo-controlled design, 27 endurance athletes (34.8±6.7 y, BMI: 21.7±1.6 kg·m-2, 9 female) ingested an energy gel with a menthol additive at relative concentrations: low (0.1%), medium-low (0.3%), medium-high (0.5%), high (0.7%), or a non-menthol, flavor-matched placebo (CON), on separate days before outdoor running sessions. Athletes rated the gels for cooling sensation, irritation (tingling/burning), flavor, and overall experience on 100-point sensory and hedonic labeled magnitude scales. The duration of any cooling sensation was also reported. Repeated measures ANOVAs with a Bonferroni adjustment for pairwise comparisons were used to determine differences. RESULTS: All menthol gels successfully delivered a greater cooling sensation compared to CON (7.4±8.1 AU) with a significantly greater response for 0.7% (59.9±20.5 AU) and 0.5% (57.7±21.8 AU), compared to all others, which were both rated “moderate-strong” for intensity. Irritation intensity was higher for all menthol gels compared to CON (3.4±7.2 AU), and for 0.7% compared to 0.1% (31.1±31.0 vs 16.3±21.0 AU, p=0.041), with none reported higher than a “mild-moderate” intensity. The menthol gels delivered a significantly longer cooling duration (range: 12.3-19.6 min) compared to CON (2.2±4.8 min) with no significant difference between menthol gels. Ratings of overall experience and flavor were not different between gels (p\u3e.05). CONCLUSION: A flavored energy gel with the addition of menthol at 0.1-0.7% provides a cooling sensation for athletes when ingested before exercise. The 0.5% concentration is recommended to maximize the cooling sensation of the gel whilst minimizing irritation

    Athlete perceptions of flavored, menthol-enhanced energy gels ingested prior to endurance exercise in the heat

    Get PDF
    Background L-menthol evokes a cooling sensation by activating cold sensing cation channels. Menthol-enhanced fluids can be ergogenic during exercise in the heat by improving thermal perception; hence, the addition of menthol to energy gels may benefit athletes. Previously, unflavored menthol gels were deemed acceptable at 0.1% concentration, but no research has been undertaken on menthol gels with additional flavoring. Therefore, we determined athlete perceptions of flavored energy gels with different menthol concentrations. Methods With a randomized, crossover, double-blind, placebo-controlled design, 27 athletes (34.8 ± 6.7 y, 9 females) ingested an energy gel with either 0.1%, 0.3%, 0.5%, or 0.7% menthol concentration, or a non-menthol, flavor-matched placebo (CON), on separate occasions before outdoor exercise. Gels were rated for cooling sensation, irritation, flavor, and overall experience on 100-point sensory and hedonic labeled magnitude scales. The duration of any cooling sensation was also reported. Results All menthol gels delivered a greater cooling sensation compared to CON (7.4 ± 8.1 AU) with a significantly greater response for 0.7% (59.9 ± 20.5 AU) and 0.5% (57.7 ± 21.8 AU), compared to all others. Irritation was higher for all menthol gels compared to CON (3.4 ± 7.2 AU) and for 0.7% compared to 0.1% (31.1 ± 31.0 vs. 16.3 ± 21.0 AU, p = 0.041), with none rated above a ‘mild-moderate’ intensity. The menthol gels delivered a significantly longer cooling sensation duration (12.3-19.6 min) versus CON (2.2 ± 4.8 min) with no difference between menthol gels. Conclusion A flavored menthol energy gel at 0.1–0.7% concentration provides a cooling sensation for athletes when ingested before exercise. The 0.5% concentration is recommended to maximize the cooling sensation whilst minimizing irritation

    A menthol-enhanced “cooling” energy gel does not influence laboratory time trial performance in trained runners

    Get PDF
    l-menthol (menthol) is an organic compound derived from peppermint which imparts a refreshing mint flavor and aroma to oral hygiene products, chewing gum, and topical analgesics. Menthol has been identified as a non-thermal sensory cooling strategy for athletes when ingested or mouth-rinsed during exercise in hot environments. Therefore, sports nutrition products delivering a controlled concentration of menthol could be beneficial for athletes exercising in the heat. We sought to test the performance and perceptual outcomes of a novel menthol energy gel during treadmill running in the heat (33 °C, 49% RH). Fourteen trained runners (mean ± SD; age: 31 ± 6 years, VO2max: 56.5 ± 10.1 mL·kg−1·min−1, BMI: 23.2 ± 2.4 kg/m2; six female) participated in a randomized, crossover, double-blind, and placebo-controlled study. A menthol-enhanced energy gel (0.5% concentration; MEN) or flavor-matched placebo (PLA) was ingested 5 min before and again at 20 and 40 min of a 40 min treadmill exercise preload at 60% VO2max, followed by a 20 min self-paced time trial. The total distance, vertical distance, perceptual measures (thermal comfort, thermal sensation, rating of perceived exertion, and affect), and cognitive performance via computerized neurocognitive assessment were measured. No difference between 20 min self-paced time trial total distance (MEN: 4.22 ± 0.54 km, PLA: 4.22 ± 0.55 km, p = 0.867), vertical distance (MEN: 49.2 ± 24.6 m, PLA: 44.4 ± 11.4 m, p = 0.516), or any perceptual measures was observed (all p > 0.05). Cognitive performance was not different between the trials (all p > 0.05). These results suggest that a menthol energy gel is not superior to a non-menthol gel in terms of performance or perception during treadmill running in the heat. More research is needed to confirm whether these findings translate to ecologically valid settings, including outdoor exercise in ambient heat and during competition

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Development of a "cooling" menthol energy gel for endurance athletes : Effect of menthol concentration on acceptability and preferences

    No full text
    Menthol is effective at stimulating thermosensitive neurons that evoke pleasant cooling sensations. Internal application of menthol can be ergogenic for athletes, and hence, addition of menthol to sports nutrition products may be beneficial for athletes. The aim of this study was to develop a menthol energy gel for consumption during exercise and to determine acceptability and preferences for gels with different menthol concentrations. With a randomized, crossover, and double-blind placebo-controlled design, 40 endurance athletes (20 females) ingested an energy gel with a menthol additive at a high (0.5%; HIGH) or low concentration (0.1%; LOW), or a mint-flavored placebo (CON), on separate occasions during outdoor endurance training sessions. The athletes rated the gels for cooling sensation, mint flavor intensity, sweetness, and overall experience and provided feedback. Results are reported as median (interquartile range). Both menthol gels successfully delivered a cooling sensation, with a significantly greater response for HIGH (5.0 [4.0–5.0]) compared with LOW (3.5 [3.0–4.0]; p = .022) and CON (1.0 [1.0–2.0]; p < .0005), and LOW compared with CON (p < .0005). Ratings of mint flavor intensity followed the same trend as cooling sensation, while ratings of overall experience were significantly worse for HIGH (2.0 [1.0–3.0]) compared with LOW (4.0 [2.0–4.0]; p = .001) and CON (4.0 [3.0–4.0]; p < .0005). An energy gel with the addition of menthol at 0.1–0.5% provides a cooling sensation for athletes with a dose–response when ingested during exercise. The 0.1% concentration is recommended to maximize the overall experience of the gel

    Supplementation with a Proprietary Blend of Ancient Peat and Apple Extract May Improve Body Composition without Affecting Hematology in Resistance-Trained Men

    No full text
    Adenosine 5’-triphosphate (ATP) is primarily known as a cellular source of energy. Increased ATP levels may have the potential to enhance body composition. A novel, proprietary blend of ancient peat and apple extracts, has been reported to increase ATP levels, potentially by enhancing mitochondrial ATP production. Therefore, the purpose of this investigation was to determine the supplement’s effects on body composition when consumed during 12 weeks of resistance training. Twenty-five healthy, resistance-trained, male subjects (27.7±4.8y; 176.0±6.5cm; 83.2±12.1kg) completed this study. Subjects supplemented once daily with either 1 serving (150mg) of a proprietary blend of ancient peat and apple extracts (TRT) or placebo (PLA). Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2-week overreach and a 2-week taper phase. Body composition was assessed using DEXA and ultrasound at weeks 0, 4, 8, 10, and 12. Vital signs and blood markers were assessed at weeks 0, 8, and 12. Significant group x time (pThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Consuming a multi-ingredient thermogenic supplement for 28 days is apparently safe in healthy adults

    No full text
    Background: Thermogenic (TRM) supplements are often used by people seeking to decrease body weight. Many TRM supplements are formulated with multiple ingredients purported to increase energy expenditure and maximize fat loss. However, in the past some TRM ingredients have been deemed unsafe and removed from the market. Therefore, it is important to verify the safety of multi-ingredient TRM supplements with chronic consumption. Objective: To assess the safety of daily consumption of a multi-ingredient TRM supplement over a 28-day period in healthy adults. Design: Twenty-three recreationally active adults (11M, 12F; 27.1±5.4 years, 171.6±9.6 cm, 76.8±16.1 kg, 26±5 BMI) were randomly assigned either to consume a multi-ingredient TRM supplement (SUP; n=9) or remain unsupplemented (CRL; n=14) for 28 days. Participants maintained their habitual dietary and exercise routines for the duration of the study. Fasting blood samples, resting blood pressure, and heart rate were taken before and after the supplementation period. Samples were analyzed for complete blood counts, comprehensive metabolic, and lipid panels. Results: Significant (p<0.05) group by time interactions were present for diastolic BP, creatinine, estimated glomerular filtration rate (eGFR), chloride, CO2, globulin, albumin:globulin (A/G), and high-density lipoprotein (HDL). Dependent t-tests conducted on significant variables revealed significant (p<0.05) within-group differences in SUP for diastolic BP (+6.2±5.3 mmHG), creatinine (+0.09±0.05 mg/dL), eGFR (−11.2±5.8 mL/min/1.73), globulin (−0.29±0.24 g/dL), A/G (+0.27±0.23), and HDL (−5.0±5.5 mg/dL), and in CRL for CO2 (−1.9±1.5 mmol/L) between time points. Each variable remained within the accepted physiological range. Conclusion: Results of the present study support the clinical safety of a multi-ingredient TRM containing caffeine, green tea extract, and cayenne powder. Although there were statistically significant (p<0.05) intragroup differences in SUP from pre- to postsupplementation for diastolic BP, creatinine, eGFR, globulin, A/G, and HDL, all remained within accepted physiological ranges and were not clinically significant. In sum, it appears as though daily supplementation with a multi-ingredient TRM is safe for consumption by healthy adults for a 28-day period

    Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation

    No full text
    BACKGROUND: Casein protein consumed before sleep has been suggested to offer an overnight supply of exogenous amino acids for anabolic processes. The purpose of this study was to compare supplemental casein consumed earlier in the day (DayTime, DT) versus shortly before bed (NightTime, NT) on body composition, strength, and muscle hypertrophy in response to supervised resistance training. METHODS: Thirteen males participated in a 10-week exercise and dietary intervention while receiving 35 g casein daily. Isocaloric diets provided 1.8 g protein/kg body weight. RESULTS: Both groups increased (p &lt; 0.05) in lean soft tissue (DT Pre: 58.3 ± 10.3 kg; DT Post: 61.1 ± 11.1 kg; NT Pre: 58.3 ± 8.6 kg; NT Post: 60.3 ± 8.2 kg), cross-sectional area (CSA, DT Pre: 3.4 ± 1.5 cm2; DT Post: 4.1 ± 1.7 cm2; NT Pre: 3.3 ± 1.6 cm2; NT Post: 3.7 ± 1.6 cm2) and strength in the leg press (DT Pre: 341 ± 87.3 kg; DT Post: 421.1 ± 94.0 kg; NT Pre: 450.0 ± 180.3 kg; NT Post: 533.9 ± 155.4 kg) and bench press (DT Pre: 89.0 ± 27.0 kg; DT Post: 101.0 ± 24.0 kg; NT Pre 100.8 ± 32.4 kg; NT Post: 109.1 ± 30.4 kg) with no difference between groups in any variable (p &gt; 0.05). CONCLUSIONS: Both NT and DT protein consumption as part of a 24-h nutrition approach are effective for increasing strength and hypertrophy. The results support the strategy of achieving specific daily protein levels versus specific timing of protein ingestion for increasing muscle mass and performance. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03352583

    A multi-ingredient, pre-workout supplement is apparently safe in healthy males and females

    No full text
    Background: Pre-workout supplements (PWS) have become increasingly popular with recreational and competitive athletes. While many ingredients used in PWS have had their safety assessed, the interactions when combined are less understood. Objective: The purpose of this study was to examine the safety of 1 and 2 servings of a PWS. Design: Forty-four males and females (24.4±4.6 years; 174.7±9.3 cm; 78.9±18.6 kg) from two laboratories participated in this study. Subjects were randomly assigned to consume either one serving (G1; n=14) or two servings (G2; n=18) of PWS or serve as an unsupplemented control (CRL; n=12). Blood draws for safety panels were conducted by a trained phlebotomist before and after the supplementation period. Results: Pooled data from both laboratories revealed significant group×time interactions (p<0.05) for mean corpuscular hemoglobin (MCH; CRL: 30.9±0.8–31.0±0.9 pg; G1: 30.7±1.1–30.2±0.7 pg; G2: 30.9±1.2–30.9±1.1 pg), MCH concentration (CRL: 34.0±0.9–34.4±0.7 g/dL; G1: 34.1±0.9–33.8±0.6 g/dL; G2: 34.0±1.0–33.8±0.8 g/dL), platelets (CRL: 261.9±45.7–255.2±41.2×103/µL; G1: 223.8±47.7–238.7±49.6×103/µL; G2: 239.1±28.3–230.8±34.5×103/µL), serum glucose (CRL: 84.1±5.2–83.3±5.8 mg/dL; G1: 86.5±7.9–89.7±5.6 mg/dL; G2: 87.4±7.2–89.9±6.6 mg/dL), sodium (CRL: 137.0±2.7–136.4±2.4 mmol/L; 139.6±1.4–140.0±2.2 mmol/L; G2: 139.0±2.2–138.7±1.7 mmol/L), albumin (CRL: 4.4±0.15–4.4±0.22 g/dL; G1: 4.5±0.19–4.5±0.13 g/dL; G2: 4.6±0.28–4.3±0.13 g/dL), and albumin:globulin (CRL: 1.8±0.30–1.8±0.28; G1: 1.9±0.30–2.0±0.31; G2: 1.8±0.34–1.8±0.34). Each of these variables remained within the clinical reference ranges. Conclusions: The PWS appears to be safe for heart, liver, and kidney function in both one-serving and two-serving doses when consumed daily for 28 days. Despite the changes observed for select variables, no variable reached clinical significance
    corecore