10 research outputs found

    Quantitative Imaging Parameters in the Diagnosis of Endometriomas

    Get PDF
    The classic imaging diagnosis of endometriomas encounters multiple limitations, including the subjective evaluation of medical examinations and a similar imaging appearance with other adnexal lesions, especially the functional hemorrhagic cysts. For this reason, a definite diagnosis of endometriomas can be made only by pathological analysis, which reveals particular features in terms of cellularity and biochemical components of their fluid content. It is theorized that these histopathological features can also be reflected in medical images, altering the pixel intensity and distribution, but these changes are too subtle to be assessed by the naked eye. New quantitative imaging evaluations and emerging computer-aided diagnosis techniques can provide a detailed description of image contents that can be furtherly processed by algorithms, aiming to provide a more accurate and non-invasive diagnosis for this disease

    Quantitative MRI of Pancreatic Cystic Lesions: A New Diagnostic Approach

    No full text
    The commonly used magnetic resonance (MRI) criteria can be insufficient for discriminating mucinous from non-mucinous pancreatic cystic lesions (PCLs). The histological differences between PCLs’ fluid composition may be reflected in MRI images, but cannot be assessed by visual evaluation alone. We investigate whether additional MRI quantitative parameters such as signal intensity measurements (SIMs) and radiomics texture analysis (TA) can aid the differentiation between mucinous and non-mucinous PCLs. Fifty-nine PCLs (mucinous, n = 24; non-mucinous, n = 35) are retrospectively included. The SIMs were performed by two radiologists on T2 and diffusion-weighted images (T2WI and DWI) and apparent diffusion coefficient (ADC) maps. A total of 550 radiomic features were extracted from the T2WI and ADC maps of every lesion. The SIMs and TA features were compared between entities using univariate, receiver-operating, and multivariate analysis. The SIM analysis showed no statistically significant differences between the two groups (p = 0.69, 0.21–0.43, and 0.98 for T2, DWI, and ADC, respectively). Mucinous and non-mucinous PLCs were successfully discriminated by both T2-based (83.2–100% sensitivity and 69.3–96.2% specificity) and ADC-based (40–85% sensitivity and 60–96.67% specificity) radiomic features. SIMs cannot reliably discriminate between PCLs. Radiomics have the potential to augment the common MRI diagnosis of PLCs by providing quantitative and reproducible imaging features, but validation is required by further studies

    Ultrasonography in the Diagnosis of Adnexal Lesions: The Role of Texture Analysis

    No full text
    The classic ultrasonographic differentiation between benign and malignant adnexal masses encounters several limitations. Ultrasonography-based texture analysis (USTA) offers a new perspective, but its role has been incompletely evaluated. This study aimed to further investigate USTA’s capacity in differentiating benign from malignant adnexal tumors, as well as comparing the workflow and the results with previously-published research. A total of 123 adnexal lesions (benign, 88; malignant, 35) were retrospectively included. The USTA was performed on dedicated software. By applying three reduction techniques, 23 features with the highest discriminatory potential were selected. The features’ ability to identify ovarian malignancies was evaluated through univariate, multivariate, and receiver operating characteristics analyses, and also by the use of the k-nearest neighbor (KNN) classifier. Three parameters were independent predictors for ovarian neoplasms (sum variance, and two variations of the sum of squares). Benign and malignant lesions were differentiated with 90.48% sensitivity and 93.1% specificity by the prediction model (which included the three independent predictors), and with 71.43–80% sensitivity and 87.5–89.77% specificity by the KNN classifier. The USTA shows statistically significant differences between the textures of the two groups, but it is unclear whether the parameters can reflect the true histopathological characteristics of adnexal lesions

    Radiomic Signatures Derived from Hybrid Contrast-Enhanced Ultrasound Images (CEUS) for the Assessment of Histological Characteristics of Breast Cancer: A Pilot Study

    No full text
    The purpose of this study was to evaluate the diagnostic performance of radiomic features extracted from standardized hybrid contrast-enhanced ultrasound (CEUS) data for the assessment of hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, tumor grade and Ki-67 in patients with primary breast cancer. Methods: This prospective study included 72 patients with biopsy-proven breast cancer who underwent CEUS examinations between October 2020 and September 2021. Results: A radiomic analysis found the WavEnHH_s_4 parameter as an independent predictor associated with the HER2+ status with 76.92% sensitivity, and 64.41% specificity and a prediction model that could differentiate between the HER2 entities with 76.92% sensitivity and 84.75% specificity. The RWavEnLH_s-4 parameter was an independent predictor for estrogen receptor (ER) status with 55.93% sensitivity and 84.62% specificity, while a prediction model (RPerc01, RPerc10 and RWavEnLH_s_4) could differentiate between the progesterone receptor (PR) status with 44.74% sensitivity and 88.24% specificity. No texture parameter showed statistically significant results at the univariate analysis when comparing the Nottingham grade and the Ki-67 status. Conclusion: Our preliminary data indicate a potential that hybrid CEUS radiomic features allow the discrimination between breast cancers of different receptor and HER2 statuses with high specificity. Hybrid CEUS radiomic features might have the potential to provide a noninvasive, easily accessible and contrast-agent-safe method to assess tumor biology before and during treatment

    Differentiation of Endometriomas from Ovarian Hemorrhagic Cysts at Magnetic Resonance: The Role of Texture Analysis

    No full text
    Background and Objectives: To assess ovarian cysts with texture analysis (TA) in magnetic resonance (MRI) images for establishing a differentiation criterion for endometriomas and functional hemorrhagic cysts (HCs) that could potentially outperform their classic MRI diagnostic features. Materials and Methods: Forty-three patients with known ovarian cysts who underwent MRI were retrospectively included (endometriomas, n = 29; HCs, n = 14). TA was performed using dedicated software based on T2-weighted images, by incorporating the whole lesions in a three-dimensional region of interest. The most discriminative texture features were highlighted by three selection methods (Fisher, probability of classification error and average correlation coefficients, and mutual information). The absolute values of these parameters were compared through univariate, multivariate, and receiver operating characteristic analyses. The ability of the two classic diagnostic signs (“T2 shading” and “T2 dark spots”) to diagnose endometriomas was assessed by quantifying their sensitivity (Se) and specificity (Sp), following their conventional assessment on T1-and T2-weighted images by two radiologists. Results: The diagnostic power of the one texture parameter that was an independent predictor of endometriomas (entropy, 75% Se and 100% Sp) and of the predictive model composed of all parameters that showed statistically significant results at the univariate analysis (100% Se, 100% Sp) outperformed the ones shown by the classic MRI endometrioma features (“T2 shading”, 75.86% Se and 35.71% Sp; “T2 dark spots”, 55.17% Se and 64.29% Sp). Conclusion: Whole-lesion MRI TA has the potential to offer a superior discrimination criterion between endometriomas and HCs compared to the classic evaluation of the two lesions’ MRI signal behaviors

    CT-Based Radiomic Analysis May Predict Bacteriological Features of Infected Intraperitoneal Fluid Collections after Gastric Cancer Surgery

    No full text
    The ability of texture analysis (TA) features to discriminate between different types of infected fluid collections, as seen on computed tomography (CT) images, has never been investigated. The study comprised forty patients who had pathological post-operative fluid collections following gastric cancer surgery and underwent CT scans. Patients were separated into six groups based on advanced microbiological analysis of the fluid: mono bacterial (n = 16)/multiple-bacterial (n = 24)/fungal (n = 14)/non-fungal (n = 26) infection and drug susceptibility tests into: multiple drug-resistance bacteria (n = 23) and non-resistant bacteria (n = 17). Dedicated software was used to extract the collections’ TA parameters. The parameters obtained were used to compare fungal and non-fungal infections, mono-bacterial and multiple-bacterial infections, and multiresistant and non-resistant infections. Univariate and receiver operating characteristic analyses and the calculation of sensitivity (Se) and specificity (Sp) were used to identify the best-suited parameters for distinguishing between the selected groups. TA parameters were able to differentiate between fungal and non-fungal collections (ATeta3, p = 0.02; 55% Se, 100% Sp), mono and multiple-bacterial (CN2D6AngScMom, p = 0.03); 80% Se, 64.29% Sp) and between multiresistant and non-multiresistant collections (CN2D6Contrast, p = 0.04; 100% Se, 50% Sp). CT-based TA can statistically differentiate between different types of infected fluid collections. However, it is unclear which of the fluids’ micro or macroscopic features are reflected by the texture parameters. In addition, this cohort is used as a training cohort for the imaging algorithm, with further validation cohorts being required to confirm the changes detected by the algorithm

    Computer Tomography in the Diagnosis of Ovarian Cysts: The Role of Fluid Attenuation Values

    No full text
    Pathological analysis of ovarian cysts shows specific fluid characteristics that cannot be standardly evaluated on computer tomography (CT) examinations. This study aimed to assess the ovarian cysts’ fluid attenuation values on the native (Np), arterial (Ap), and venous (Vp) contrast phases of seventy patients with ovarian cysts who underwent CT examinations and were retrospectively included in this study. Patients were divided according to their final diagnosis into the benign group (n = 32) and malignant group (n = 38; of which 27 were primary and 11 were secondary lesions). Two radiologists measured the fluid attenuation values on each contrast phase, and the average values were used to discriminate between benign and malignant groups and primary tumors and metastases via univariate, multivariate, multiple regression, and receiver operating characteristics analyses. The Ap densities (p = 0.0002) were independently associated with malignant cysts. Based on the densities measured on all three phases, neoplastic lesions could be diagnosed with 89.47% sensitivity and 62.5% specificity. The Np densities (p = 0.0005) were able to identify metastases with 90.91% sensitivity and 70.37% specificity, while the combined densities of all three phases diagnosed secondary lesions with 72.73% sensitivity and 92.59% specificity. The ovarian cysts’ fluid densities could function as an adjuvant criterion to the classic CT evaluation of ovarian cysts

    The Diagnostic Value of MRI-Based Radiomic Analysis of Lacrimal Glands in Patients with Sjögren’s Syndrome

    No full text
    This study aimed to assess the effectiveness of MRI-based texture features of the lacrimal glands (LG) in augmenting the imaging differentiation between primary Sjögren’s Syndrome (pSS) affected LG and healthy LG, as well as to emphasize the possible importance of radiomics in pSS early-imaging diagnosis. The MRI examinations of 23 patients diagnosed with pSS and 23 healthy controls were retrospectively included. Texture features of both LG were extracted from a coronal post-contrast T1-weighted sequence, using a dedicated software. The ability of texture features to discriminate between healthy and pSS lacrimal glands was performed through univariate, multivariate, and receiver operating characteristics analysis. Two quantitative textural analysis features, RunLengthNonUniformityNormalized (RLNonUN) and Maximum2DDiameterColumn (Max2DDC), were independent predictors of pSS-affected glands (p < 0.001). Their combined ability was able to identify pSS LG with 91.67% sensitivity and 83.33% specificity. MRI-based texture features have the potential to function as quantitative additional criteria that could increase the diagnostic accuracy of pSS-affected LG

    Textural Analysis of the Hyperdense Artery Sign in Patients with Acute Ischemic Stroke Predicts the Outcome of Thrombectomy

    No full text
    Textural analysis is pivotal in augmenting the diagnosis and outcomes of endovascular procedures for stroke patients. Due to the detection of changes imperceptible to the human eye, this type of analysis can potentially aid in deciding the optimal type of endovascular treatment. We included 40 patients who suffered from acute ischemic stroke caused by large vessel occlusion, and calculated 130 different textural features based on the non-enhanced CT scan using an open-source software (3D Slicer). Using chi-squared and Mann–Whitney tests and receiver operating characteristics analysis, we identified a total of 21 different textural parameters capable of predicting the outcome of thrombectomy (quantified as the mTICI score), with variable sensitivity (50–97.9%) and specificity (64.6–99.4%) rates. In conclusion, CT-based radiomics features are potential factors that can predict the outcome of thrombectomy in patients suffering from acute ischemic stroke, aiding in the decision between aspiration, mechanical, or combined thrombectomy procedure

    Texture Analysis in Uterine Cervix Carcinoma: Primary Tumour and Lymph Node Assessment

    No full text
    The conventional magnetic resonance imaging (MRI) evaluation and staging of cervical cancer encounters several pitfalls, partially due to subjective evaluations of medical images. Fifty-six patients with histologically proven cervical malignancies (squamous cell carcinomas, n = 42; adenocarcinomas, n = 14) who underwent pre-treatment MRI examinations were retrospectively included. The lymph node status (non-metastatic lymph nodes, n = 39; metastatic lymph nodes, n = 17) was assessed using pathological and imaging findings. The texture analysis of primary tumours and lymph nodes was performed on T2-weighted images. Texture parameters with the highest ability to discriminate between the two histological types of primary tumours and metastatic and non-metastatic lymph nodes were selected based on Fisher coefficients (cut-off value > 3). The parameters’ discriminative ability was tested using an k nearest neighbour (KNN) classifier, and by comparing their absolute values through an univariate and receiver operating characteristic analysis. Results: The KNN classified metastatic and non-metastatic lymph nodes with 93.75% accuracy. Ten entropy variations were able to identify metastatic lymph nodes (sensitivity: 79.17–88%; specificity: 93.48–97.83%). No parameters exceeded the cut-off value when differentiating between histopathological entities. In conclusion, texture analysis can offer a superior non-invasive characterization of lymph node status, which can improve the staging accuracy of cervical cancers
    corecore