
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

142,000 180M

TOP 1%154

5,800



1

Chapter

Quantitative Imaging 
Parameters in the Diagnosis of 
Endometriomas
Paul-Andrei Ștefan, Roxana-Adelina Lupean  

and Dietmar Tamandl

Abstract

The classic imaging diagnosis of endometriomas encounters multiple  
limitations, including the subjective evaluation of medical examinations and a 
similar imaging appearance with other adnexal lesions, especially the functional 
hemorrhagic cysts. For this reason, a definite diagnosis of endometriomas can be 
made only by pathological analysis, which reveals particular features in terms of 
cellularity and biochemical components of their fluid content. It is theorized that 
these histopathological features can also be reflected in medical images, altering the 
pixel intensity and distribution, but these changes are too subtle to be assessed by 
the naked eye. New quantitative imaging evaluations and emerging computer-aided 
diagnosis techniques can provide a detailed description of image contents that can 
be furtherly processed by algorithms, aiming to provide a more accurate and non-
invasive diagnosis for this disease.

Keywords: computer-aided diagnosis, endometrioma, endometriosis, MRI,  
texture analysis

1. Introduction

Laparoscopic biopsy of suspicious-looking lesions, followed by histologic 
confirmation, is the gold standard for diagnosing pelvic endometriosis [1]. The 
first line imaging of ovarian endometriotic lesions (endometriomas) remains 
transvaginal ultrasonography (TVUS) which is able, in most situations, to offer 
sufficient information for adequate preoperative planning [2]. Other diagnostic 
procedures, such as magnetic resonance imaging (MRI), are used in certain 
circumstances based on the results of the TVUS and the severity of the symp-
toms. The pelvic MRI scan provides for full lesion mapping, with a high detec-
tion rate for both anterior and, particularly, posterior lesions, whereas TVUS 
shows lower sensitivity rates [3]. MRI shows higher accuracy for the detection 
and characterization of endometriotic lesions than other imaging modalities, 
therefore it is often used to evaluate adnexal masses and monitor treatment 
response, potentially avoiding the need for a follow-up laparoscopy [4]. 
Moreover, this method is especially usefull in the detection of deep infiltrating 
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endometriosis, being absolutely required in this subcohort of patients. As with 
any other imaging modality, the MRI evaluation of endometriosis is limited 
by the technique itself, but more by the examiner’s experience and level of 
 training, since all classic MRI signs of this disease are qualitative and entire 
subjectively evaluated.

One of the most challenging tasks in the diagnosis of endometriomas is dis-
tinguishing these lesions from functional hemorrhagic ovarian cysts (HCs) since 
they share many both imaging and histological characteristics. To avoid unneces-
sary surgery, it’s critical to correctly distinguish the two lesions [5]. As a result, 
the difference in imaging between the two entities has a significant impact on the 
subsequent medical and surgical treatment options [6]. This chapter focuses on 
the emerging quantitative imaging modalities that can improve the diagnostic 
and characterization of endometriomas and may aid to distinguish these lesions 
from HCs.

2. MRI signal intensity measurements

The “T2 shading” sign is currently considered a characteristic MRI finding 
of endometriomas [7]. This sign refers to a cystic lesion with a high signal on 
T1-weighted (T1W) sequences and subsequent T2 shortening which results in 
hypointensity on T2-weighted (T2W) images, as a result of in-lesion hemorrhage 
and accumulation of blood products and proteins [8, 9].

The “T2 shading” was first described by Togashi and colleagues [10] in 1991, 
who attributed it high diagnostic value (98% sensitivity and 96% specificity). 
Following further investigation, more recent studies demonstrated that this sign is 
not as specific to endometriomas as originally thought, mostly due to the subjec-
tive character of the imaging findings [11] and the occurrence of this sign in other 
ovarian cysts accompanied by bleeding [12–14]. The acknowledgment of these 
limitations drastically decreased the utility of this sign in further studies (with 
a sensitivity and specifity as low as 68% and sensitivity and 14.2%, respectively 
specificity) [11, 12].

It is important to remember that some HCs have a delayed regression and may 
accumulate blood products, which also leads to a decrease in their intrinsec signal 
on T2W sequences [14]. However, it is expected that HCs would accumulate f 
blood products to a lesser degree compared to endometriomas, since they usu-
ally regress within a few menstrual cycles and do not exhibit cyclic intra-lesional 
bleeding. In this regard, Outwater et al. [11] concluded that endometriomas tend to 

Author Year Sensitivity Specificity

Dias et al. [15] 2015 73% 93%

Lee et al. [12] 2015 89.8% 14.2%

Outwater et al. [11] 1993 68% 76%

Sugimura et al. [16] 1993 82% 91%

Sugimura et al. [16] 1993 11% 98%

Scout et al. [17] 1994 92% 91%

Table 1. 
The diagnostic ability of the “T2 shading” sign for identifying endometriomas.
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have higher T1 and lower T2 signal intensities (SI) than HCs, thus creating a more 
abrupt “shading” phenomenon. However, previous studies did not provide a clear 
definition of the extent of the signal difference between T1W and T2W sequences, 
and the degree required for this in order to become a confident diagnostic criterion 
(Table 1). An adequate example of the variation of this signs’ appearance is demon-
strated in Figure 1.

Lately, a small-cohort study [18] aimed to differentiate endometriomas 
from HCs by quantifying the “T2 shading” sign through signal intensity (SI) 
measurements made by placing regions of interest (ROIs) within the lesions 
on T1 and T2 weighted-images (WI). The signal intensity difference was 
quantified by subtracting SI values between T1 and T2 WI (A = T1 − T2). 
There were statistically significant differences between the two entities only 
when comparing T1 SIs (p = 0.0003) due to the much higher values obtained 
by endometriomas, while the T2 SIs were very similar and did not differ sig-
nificantly (p = 0.27). As expected, endometriomas demonstrated a higher loss 
(median SI loss = 432.95 units) while HCs recorded negative results (median SI 
loss = −46.8 units). In most cases, the values recorded by HCs on T2 WI were 
higher than the ones on T1 WI, which could be a consequence of the HCs’ blood 
content being in different stages of degradation and to an overall lesser amount of 
blood products or protein accumulation (or to a higher percentage of intrinsically 
present fluid – which is usually not present in endometriomas). These results 
are in accordance with the early observations of Outwater et al. [11] that were 
mentioned earlier.

Through the quantitative appreciation of the “shading” sign, using a cut-off for 
the signal drop of more than 31.3 SI units, endometriomas could be differentiated 
from HCs with 100% sensitivity and 81.82% specificity. Therefore, this study [18] 
concluded that the key in identifying endometriomas relies upon a brighter T1 
appearance of the lesions, which cannot be always appreciated by the visual evalua-
tion (Figure 2). As the proposed measurement technique is rather basic, it could be 
easily translated into daily clinical practice, possible offering more confidence in the 
MRI diagnosis of these lesions.

Figure 1. 
The magnetic resonance (MRI) representation of the “T2 shading” sign, based on the examination of a patient 
with two histologically-proven endometriotic lesions. (A) On the axial T1-weighted image, both lesions express 
similar high-signal intensity (green arrows). (B) On the T2-weighted image, the two lesions express different 
degrees of signal drop (green arrows).
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3. Diffusion-weighted imaging

MRI incorporates a functional technique known as diffusion-weighted imaging 
(DWI). DWI sequences provide information about the Brownian motion of water mol-
ecules in a tissue [19]. Based on these sequences, apparent diffusion coefficient (ADC) 
maps can be computed, and together they offer qualitative and quantitative information 
about tissue density [20]. Tissues that are highly cellular or have cellular swelling show 
lower water diffusion coefficients which translate to higher SI on DWI sequences and 
lower values on ADC maps. The ADC value can be quantified as SI values through ROI 
placement, and can also be used as a marker of cellularity [20]. In recent years, these 
sequences have evolved as a new tool for the molecular characterization of pathological 
fluid collections [21]. Technically, the DWI sequences are constructed by acquiring 
T2-based images at different b-values, through diffusion-sensitizing gradients turned 
on at various strengths [22]. These b-values reflect the strength and time of the gradi-
ents employed to generate such diffusion-weighted images. Subsequently, the diffusion 
effects are closely linked to the b value [23]. In classic pelvic examinations, ADC maps 
are automatically generated using all acquired b values. An adequate example is dis-
played in Figure 3. The utility of this technique in differentiating endometriomas from 
HCs was also investigated in several studies, with contradictory results (Table 2).

Overall, the studies conducted by Lee [12] and Balaban [24] showed a statistically 
significant difference between the ADC values measured in the two groups, while no 
such difference was observed in a third study conducted by Lupean [18]. Interestingly, 
in the studies coordinated by Balaban [24] and Lupean [18], the recorded ADC values 
were higher for HCs than for endometriomas, while Lee [12] obtained opposite results. 
It is possible that due to the short-living nature of HCs, these lesions do not have the 
necessary time to build up blood and degradation products, and therefore they produce 
have a higher motion degree of the water molecules and therefore a lesser decrease 
of ADC values. However, the differentiation of the two entities based on diffusion 

Figure 2. 
Quantitative assessment of the “T2 shading” sign in endometriomas and functional hemorrhagic cysts.  
(A and B) The MRI examination of a 32-year old patient with endometrioma. The difference in signal 
intensity between (A) T1 (1146.61 units) and (B) T2 (318.93 units) was 827.68 units. (C and D) The MRI 
examination of a 27-year old patient with an ovarian hemorrhagic cyst. The difference in signal intensity 
between (C) T1 (413 units) and (D) T2 (420.19 units) was −7.19 units.
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sequences seems unreliable, considering the changing nature of HCs and therefore the 
variable results obtained in different studies. Therefore, the MRI diffusion techniques 
may be less suitable for the characterization of ovarian endometriotic lesions.

4. Texture analysis

4.1 Technical considerations

Sometimes the classic imaging features of different types of adnexal lesions may be 
subtle or overlap, resulting in experts giving the wrong interpretation [25]. For these 
reasons, in most cases, a definitive diagnosis of an ovarian mass can be made only 
based on pathological analysis, which raises the patients’ risks and healthcare costs.

It is theorized that the several micro and macroscopic histological characteristics 
of ovarian masses can also be reflected into the background of medical images, but 
their influence is too subtle to be assessed by the common visual evaluation. Textures 
represent the intrinsic and intuitive properties of surfaces such as roughness, granu-
lation, and regularity. Texture analysis (TA) is an image processing method based 
on the extraction and analysis of image-specific parameters that reflect the pixels’ 
distribution patterns and intensity variations [26]. Through these processes, TA 
provides an objective description of image content by attributing values to several 

Figure 3. 
(A) Axial T2 fat sat, (B) Axial DWI (b = 200), and (C) ADC map of a left-ovarian endometriotic lesion 
(red arrows). (D) Axial T2, (E) axial DWI, and (F) ADC map of a right-ovarian hemorrhagic cyst (green 
arrows). There is an obvious lower ADC signal intensity for the endometrioma (red arrow in (C)) than for the 
hemorrhagic cyst (green arrow in (F)).

Author Endometriomas HCs p-Value Cut-off Se Sp

n ADC n ADC

Lee et al. [12] 91 1.06 21 0.73 <0.002 0.849 77.6% 76.2%

Balaban et al. [24] 12 1.84 12 2.70 <0.0001 1.54 100% 92%

Lupean et al. [18] 28 0.964 18 1.001 0.52 — — —

n, number of patients; HCs, hemorrhagic cysts; ADC, median ADC values expressed as number × 10−3 mm2/s; cut-off, 
ADC cut-off value expressed as number × 10−3 mm2/s; p-value, univariate analysis result; Se, sensitivity; Sp, specificity.

Table 2. 
The main results that were obtained by studies that focused on the role of differentiating endometriomas from 
hemorrhagic cysts through apparent diffusion coefficients.
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classes of texture parameters. The basic principle of image-based TA is that a patho-
logical process that alters a tissue produces a modified signal, which will, in turn, 
give textural features different values from those of the normal structure [27].

The standard TA workflow consists of five steps: image segmentation, feature 
extraction, feature reduction, feature selection, and class prediction. Image segmenta-
tion can be performed automatically, semi-automatically, or manually. It consists of 
incorporating a given structure into a region of interest (ROI). Most often, researchers 
choose a semi-automatic technique, where a seed is defined near the center of the target 
lesion and the software automatically delineates the rest of the lesion based on gradient 
and geometry coordinates. The region or volume of interest could be delineated as a two 
or three-dimensional structure, the latter being able to provide more information at the 
cost of higher definition times [19]. However, it was proven that the latter reduces opera-
tor variability associated with multislice/volumetric analysis [20]. Therefore, it remains 
debatable which form will be best suited for clinical implementation. The TA parame-
ters’ extraction is performed automatically in almost all available software. The user can, 
however, adjust several settings regarding the parameters’ computation methods (such 
as the number of bits/pixel and inter-pixel distances). Most software solutions allow the 
extraction of a large number of texture features (parameters), which can be more dif-
ficult to process by researchers that are not familiar with statistical analysis. Therefore, 
in order to identify the parameters that are most suited to discriminate between groups, 
several reduction techniques can be available (such as Fisher, Mutual Information, and 
the probability of classification error and average correlation coefficients) [21]. The 
number of parameters can be furtherly reduced by univariate analysis (typically the 
Mann-Whitney U test), or this analysis could be used as the only reduction and selection 
technique [28]. Class prediction (or the ability of previously-selected texture parameters 
to distinguish between vectors belonging to different pre-defined groups) can be per-
formed statistically through the receiver operating characteristic analysis or by the use 
of classifiers (such as k-nearest neighbors algorithm or artificial neural networks) [29]. 
One of the most often used software for TA-related medical imaging research remains 
MaZda, which provides build-in functions for feature selection and class prediction 
[30]. A typical workflow for feature extraction in MaZda is displayed in Figure 4.

Figure 4. 
Workflow within the MaZda software for extracting texture parameters from a T2-weighted MRI image of a 
patient with an ovarian hemorrhagic cyst. (A) The region of interest (ROI) seed placed by the researcher (red 
ellipse) and (B) the ROI that was automatically defined by the software. Before feature extraction, parameter 
settings can be adjusted (C). Histogram representation based on the parameters extracted from the lesion (D).
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4.2 MRI-based TA for the diagnosis of endometriomas

One study [25] analyzed the texture parameters’ ability to distinguish endo-
metriomas from HCs. This study [25] extracted texture features from the internal 
content of these lesions as seen on T2W. Fourteen parameters showed statistically 
significant results when comparing the two entities: two variations of the wavelet 
energy, seven variations of entropy, three of the angular second moment, one of 
the sum entropy, and the histogram’s variance (Table 3). Their combined ability 
was able to differentiate the two entities with a sensitivity of 100% [95% confidence 
interval (95% CI), 85.8–100%] and a specificity of 100% (95% CI, 71.5–100%).

HCs displayed lower values of wavelet energy, most likely because their content is 
more homogeneous, resulting in lower signal variation rates [25]. Also, these lesions 
expressed lower values of the entropy and sum entropy parameters, probably because 
they do not contain such diverse cell populations and heterogeneous biochemical com-
ponents compared to endometriomas [36]. Endometriomas on the other hand showed 
lower values of the angular second moment and higher value of the variance param-
eter, indicating a lesser uniform content for these lesions (Figure 5). These parameters 
were considered reflections of the heterogeneous content of endometriomas, which 
otherwise could not be assessed by the usual examinations of the MRI images [25].

4.3 Ultrasound-based TA for the diagnosis of endometriomas

The ultrasound (US) appearance of endometriomas mainly depends on the 
time-lapse of blood degradation [37]. Most often, these lesions express a “ground 

Texture parameter Role

Wavelet energy Measures local variations of pixel intensity [31]

Entropy Measures the degree of the disorder among pixels within an image; is inversely 
correlated with uniformity [32]

Sum entropy Measures the complexity of pixel values distribution [33]

Angular second moment Directly proportional with the gray level distribution (image uniformity) [34]

Variance Inversely proportional with image uniformity [35]

Table 3. 
A brief description of the MRI-based texture parameters that showed statistically significant results when 
comparing endometriomas to HCs, based on the study conducted by Lupean et al. [25].

Figure 5. 
(A) T2-weighted image of a patient with histologically-proven endometriomas. The texture maps show the 
distribution of the variance (B) and wavelet energy (C) parameters.
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glass” appearance, a feature to which different degrees of accuracy have been 
attributed over time (Table 4).

In practice, the grayscale US of endometriomas and HCs can be very similar, 
both lesions showing characteristics of different stages of blood degradation, mak-
ing the distinction difficult [42]. A study [43] showed that 20 texture parameters 
that were extracted from the US of greyscale images showed statistically significant 
results when distinguishing endometriomas from HCs. Their combined ability 
was able to differentiate between the two entities with 100% (95% CI, 88.4–100%) 
sensitivity and 100% (95% CI, 75.3–100%) [43]. Three parameters were proved to 
be independent predictors of endometriomas (difference variance, contrast, and 
the 10th percentile) (Figure 6) [43]. The difference of variance parameter measures 
the variance of the difference of gray level values (reflecting the randomness within 
an image) [44]. The contrast parameter shows the local variations present in an 
image, expressing higher values when an image contains a large number of pixels 
with different gray level values [45]. The study [43] showed that both of these 
parameters held higher values for HCs than for endometriomas. On the other hand, 
the 10th percentile showed higher values for endometriomas than for HCs, which 
signifies that 10% of the pixels within images were distributed under higher values 
for endometriomas than for HOCs [43]. Even though endometriomas were expected 
to have a higher degree of echogenic randomness due to a large number of con-
tained elements, HCs displayed higher values for the parameters that mirror these 
characteristics [43]. This finding is consistent with the literature, which suggests 

Figure 6. 
(A) T2-weighted image of a patient with histologically-proven endometrioma. The texture maps show the 
distribution of the (B) 10th percentile, (C) contrast, and (D) difference variance parameters.

Author Year Se Sp

Patel et al. [38] 1999 30–95% 49–90%

Mais et al. [39] 1993 84% 90%

Alcázar et al. [40] 1997 88.9% 91%

Van Holsbeke et al. [41] 2010 73% 94%

Table 4. 
Studies that evaluated the diagnostic utility of the “ground glass” appearance of endometriomas.
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that HOCs have more complicated and heterogeneous content on TVUS (since they 
express tiny linear strands and retraction clots more frequently) [46].

5. Conclusion

The current imaging diagnosis of endometriomas encounters several limitations, 
including a similar appearance to other hemorrhagic adnexal lesions and the subjec-
tive nature of the imaging signs considered specific to this disease. Quantitative 
imaging methods (such as MRI SI measurements and TA) can improve the diag-
nostic confidence of endometriomas, but the studies validating these methods are 
certainly required.
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