16 research outputs found
A quantitative release assessment for the noncommercial movement of companion animals : risk of rabies reintroduction to the United Kingdom
In 2004, the European Union (EU) implemented a pet movement policy (referred to here as the EUPMP) under EU regulation 998/2003. The United Kingdom (UK) was granted a temporary derogation from the policy until December 2011 and instead has in place its own Pet Movement Policy (Pet Travel Scheme (PETS)). A quantitative risk assessment (QRA) was developed to estimate the risk of rabies introduction to the UK under both schemes to quantify any change in the risk of rabies introduction should the UK harmonize with the EU policy. Assuming 100 % compliance with the regulations, moving to the EUPMP was predicted to increase the annual risk of rabies introduction to the UK by approximately 60-fold, from 7.79 × 10(-5) (5.90 × 10(-5) , 1.06 × 10(-4) ) under the current scheme to 4.79 × 10(-3) (4.05 × 10(-3) , 5.65 × 10(-3) ) under the EUPMP. This corresponds to a decrease from 13,272 (9,408, 16,940) to 211 (177, 247) years between rabies introductions. The risks associated with both the schemes were predicted to increase when less than 100 % compliance was assumed, with the current scheme of PETS and quarantine being shown to be particularly sensitive to noncompliance. The results of this risk assessment, along with other evidence, formed a scientific evidence base to inform policy decision with respect to companion animal movement
Influenza at the animal-human interface: A review of the literature for virological evidence of human infection with swine or avian influenza viruses other than A(H5N1)
Factors that trigger human infection with animal influenza virus progressing into a pandemic are poorly understood. Within a project developing an evidence-based risk assessment framework for influenza viruses in animals, we conducted a review of the literature for evidence of human infection with animal influenza viruses by diagnostic methods used. The review covering Medline, Embase, SciSearch and CabAbstracts yielded 6,955 articles, of which we retained 89; for influenza A(H5N1) and A(H7N9), the official case counts of the World Health Organization were used. An additional 30 studies were included by scanning the reference lists. Here, we present the findings for confirmed infections with virological evidence. We found reports of 1,419 naturally infected human cases, of which 648 were associated with avian influenza virus (AIV) A(H5N1), 375 with other AIV subtypes, and 396 with swine influenza virus (SIV). Human cases naturally infected with AIV spanned haemagglutinin subtypes H5, H6, H7, H9 and H10. SIV cases were associated with endemic SIV of H1 and H3 subtype d
A risk analysis and modelling approach for the management of E. coli O157 and Salmonella
EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Detecting new and emerging diseases on livestock farms using an early detection system.
SUMMARYThe monitoring and surveillance of animal diseases is becoming increasingly important to policy-makers in Great Britain particularly given recent incursions of avian influenza and the emergence of bovine spongiform encephalopathy. To meet this surveillance objective, data from British livestock is collected and analysed retrospectively on an ongoing basis. However, these data can also be analysed prospectively within an early detection system which raises alerts to significant increases in disease reporting soon after they occur in the field. The feasibility of such an approach has been examined previously for Salmonella. This paper applied the approach to a further subset of surveillance data to alert those monitoring disease to increases in potentially new and emerging diseases. Thus far, the analysis, conducted on a quarterly basis, has proved a useful additional tool in enhanced surveillance by raising alerts to significant increases in several syndromes in both sheep and cattle
Risk assessments to inform policy decisions regarding importation of pets from North America
A quantitative risk assessment was developed to assist in the policy decision to amend the long-standing quarantine laws for dogs and cats from North America
A Generic Quantitative Risk Assessment Framework for the Entry of Bat-Borne Zoonotic Viruses into the European Union
<div><p>Bat-borne viruses have been linked to a number of zoonotic diseases; in 2014 there have been human cases of Nipah virus (NiV) in Bangladesh and Ebola virus in West and Central Africa. Here we describe a model designed to provide initial quantitative predictions of the risk of entry of such viruses to European Union (EU) Member States (MSs) through four routes: human travel, legal trade (e.g. fruit and animal products), live animal movements and illegal importation of bushmeat. The model utilises available datasets to assess the movement via these routes between individual countries of the world and EU MSs. These data are combined with virus specific data to assess the relative risk of entry between EU MSs. As a case study, the model was parameterised for NiV. Scenario analyses showed that the selection of exporting countries with NiV and potentially contaminated trade products were essential to the accuracy of all model outputs. Uncertainty analyses of other model parameters identified that the model expected number of years to an introduction event within the EU was highly susceptible to the prevalence of NiV in bats. The relative rankings of the MSs and routes, however, were more robust. The UK, the Netherlands and Germany were consistently the most likely points of entry and the ranking of most MSs varied by no more than three places (maximum variation five places). Legal trade was consistently the most likely route of entry, only falling below human travel when the estimate of the prevalence of NiV in bats was particularly low. Any model-based calculation is dependent on the data available to feed into the model and there are distinct gaps in our knowledge, particularly in regard to various pathogen/virus as well as host/bat characteristics. However, the strengths of this model lie in the provision of relative comparisons of risk among routes and MSs. The potential for expansion of the model to include other routes and viruses and the possibility of rapid parameterisation demonstrates its potential for use in an outbreak situation.</p></div
Overview of model framework, showing the important events in each route up to the point of entry to the EU.
<p>Green boxes highlight model parameters/data inputs and purple boxes highlight model estimates.</p
Average number of years until an introduction event of NiV, by EU MS and route.
<p>Colour scale from red to green, where red is the lower number of years before an introduction event.</p