6,232 research outputs found

    An exactly solvable model of a superconducting to rotational phase transition

    Full text link
    We consider a many-fermion model which exhibits a transition from a superconducting to a rotational phase with variation of a parameter in its Hamiltonian. The model has analytical solutions in its two limits due to the presence of dynamical symmetries. However, the symmetries are basically incompatible with one another; no simple solution exists in intermediate situations. Exact (numerical) solutions are possible and enable one to study the behavior of competing but incompatible symmetries and the phase transitions that result in a semirealistic situation. The results are remarkably simple and shed light on the nature of phase transitions.Comment: 11 pages including 1 figur

    Generation of Entangled Photon Holes using Quantum Interference

    Get PDF
    In addition to photon pairs entangled in polarization or other variables, quantum mechanics also allows optical beams that are entangled through the absence of the photons themselves. These correlated absences, or ``entangled photon holes'', can lead to counter-intuitive nonlocal effects analogous to those of the more familiar entangled photon pairs. Here we report an experimental observation of photon holes generated using quantum interference effects to suppress the probability that two photons in a weak laser pulse will separate at an optical beam splitter.Comment: 4 pages, color figures, submitted to Phys. Rev.

    Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt

    Full text link
    The spin dependence of the photoelectron tunnel current from free standing GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The measured spin asymmetry (A) resulting from a change in light helicity, reaches +/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V applied to the GaAs. This decrease is a result of the drop in the photoelectron spin polarization that results from a reduction in the GaAs surface recombination velocity. The sign of A changes with that of the Cobalt magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%

    Optical and transport properties of heavy fermions: theory compared to experiment

    Full text link
    Employing a local moment approach to the periodic Anderson model within the framework of dynamical mean-field theory, direct comparison is made between theory and experiment for the dc transport and optical conductivities of paramagnetic heavy fermion and intermediate valence metals. Four materials, exhibiting a diverse range of behaviour in their transport/optics, are analysed in detail: CeB6, YbAl3, CeAl3 and CeCoIn5. Good agreement between theory and experiment is in general found, even quantitatively, and a mutually consistent picture of transport and optics results.Comment: 21 pages, 10 figures; Replacement with minor style changes made to avoid postscript file error

    Vector coherent state representations, induced representations, and geometric quantization: I. Scalar coherent state representations

    Get PDF
    Coherent state theory is shown to reproduce three categories of representations of the spectrum generating algebra for an algebraic model: (i) classical realizations which are the starting point for geometric quantization; (ii) induced unitary representations corresponding to prequantization; and (iii) irreducible unitary representations obtained in geometric quantization by choice of a polarization. These representations establish an intimate relation between coherent state theory and geometric quantization in the context of induced representations.Comment: 29 pages, part 1 of two papers, published versio

    Hermitian boson mapping and finite truncation

    Full text link
    Starting from a general, microscopic fermion-to-boson mapping that preserves Hermitian conjugation, we discuss truncations of the boson Fock space basis. We give conditions under which the exact boson images of finite fermion operators are also finite (e.g., a 1+2-body fermion Hamiltonian is mapped to a 1+2-body boson Hamiltonian) in the truncated basis. For the most general case, where the image is not necessarily exactly finite, we discuss how to make practical and controlled approximations.Comment: 12 pages in RevTex with no figures, Los Alamos preprint # LA-UR-94-146

    Pairing effect on the giant dipole resonance width at low temperature

    Full text link
    The width of the giant dipole resonance (GDR) at finite temperature T in Sn-120 is calculated within the Phonon Damping Model including the neutron thermal pairing gap determined from the modified BCS theory. It is shown that the effect of thermal pairing causes a smaller GDR width at T below 2 MeV as compared to the one obtained neglecting pairing. This improves significantly the agreement between theory and experiment including the most recent data point at T = 1 MeV.Comment: 8 pages, 5 figures to be published in Physical Review

    Nonabelian density functional theory

    Full text link
    Given a vector space of microscopic quantum observables, density functional theory is formulated on its dual space. A generalized Hohenberg-Kohn theorem and the existence of the universal energy functional in the dual space are proven. In this context ordinary density functional theory corresponds to the space of one-body multiplication operators. When the operators close under commutation to form a Lie algebra, the energy functional defines a Hamiltonian dynamical system on the coadjoint orbits in the algebra's dual space. The enhanced density functional theory provides a new method for deriving the group theoretic Hamiltonian on the coadjoint orbits from the exact microscopic Hamiltonian.Comment: 1 .eps figur

    Scalar ground-state observables in the random phase approximation

    Get PDF
    We calculate the ground-state expectation value of scalar observables in the matrix formulation of the random phase approximation (RPA). Our expression, derived using the quasiboson approximation, is a straightforward generalization of the RPA correlation energy. We test the reliability of our expression by comparing against full diagonalization in 0 h-bar omega shell-model spaces. In general the RPA values are an improvement over mean-field (Hartree-Fock) results, but are not always consistent with shell-model results. We also consider exact symmetries broken in the mean-field state and whether or not they are restored in RPA.Comment: 7 pages, 3 figure
    • …
    corecore