38 research outputs found

    Transboundary cooperation a potential route to sustainable development in the Indus basin

    Get PDF
    With a rapidly growing population of 250 million, the Indus river basin in South Asia is one of the most intensively cultivated regions on Earth, highly water stressed and lacking energy security. Yet, most studies advising sustainable development policy have lacked multi-sectoral and cross-country perspectives. Here we show how the countries in the Indus basin could lower costs for development and reduce soil pollution and water stress by cooperating on water resources and electricity and food production. According to this analysis, Indus basin countries need to increase investments to US10 billion per yrtomitigatewaterscarcityissuesandensureimprovedaccesstoresourcesby2050.ThesecostscouldshrinktoUS10 billion per yr to mitigate water scarcity issues and ensure improved access to resources by 2050. These costs could shrink to US2 billion per yr, with economic gains for all, if countries pursued more collaborative policies. Downstream regions would benefit most, with reduced food and energy costs and improved water access, while upstream regions would benefit from new energy investments. Using integrated water–energy–land analysis, this study quantifies the potential benefits of novel avenues to sustainable development arising from greater international cooperation

    Participation of fad and mbt Genes in Synthesis of Mycobactin in Mycobacterium smegmatis

    No full text
    Colonies of Mycobacterium smegmatis LR222 on iron-limiting (0.1 ÎĽM Fe) minimal medium agar fluoresce under UV light due to the accumulation in the cells of the deferri form of the siderophore mycobactin. Two mutants with little or no fluorescence, designated LUN8 and LUN9, were isolated by screening colonies of transposon (Tn611)-mutagenized M. smegmatis. Ferrimycobactin prepared from iron-restricted cells of the wild type had an R(f) of 0.62 on high-performance thin-layer chromatography (HPTLC) and a characteristic visible absorption spectrum with a peak near 450 nm. Similar extracts from LUN8 cells contained a small amount of ferrimycobactin with an R(f) of 0.58 on HPTLC and an absorption spectrum with the peak shifted to a wavelength lower than that of the wild-type ferrimycobactin. Nuclear magnetic resonance spectroscopy studies suggested that the LUN8 mycobactin may have an altered fatty acid side chain. Mutant strain LUN9 produced no detectable mycobactin. Neither mutant strain produced measurable amounts of excreted mycobactin, although both excreted exochelin (the mycobacterial peptido-hydroxamate siderophore), and both mutants were more sensitive than the wild-type strain to growth inhibition by the iron chelator ethylenediamine-di(o-hydroxyphenylacetic acid). The transposon insertion sites were identified, and sequence analyses of the cloned flanking chromosome regions showed that the mutated gene in LUN9 was an orthologue of the Mycobacterium tuberculosis mycobactin biosynthetic gene mbtE. The mutated gene in LUN8 had homology with M. tuberculosis fadD33 (Rv1345), a gene that may encode an acyl-coenzyme A synthase and which previously was not known to participate in synthesis of mycobactin
    corecore