15 research outputs found

    New genus in the holothurian family synaptidae, with a new species from Tasmania

    Get PDF
    Late in 1964, one of us (D.L.P.) received from Professor V. V. Hickman in Tasmania a specimen of a new synaptid holothurian from that island. Professor Hickman had prepared permanent mounts of representative calcareous deposits of the specimen, and very kindly offered all of his material of the species to D.L.P. for inclusion in a report on the apodous holothurians of the Australian Museum which was then in preparation. Early in 1966 F.W.E.R. received from the Oslo Museum six specimens and a fragment of the same species. Quite by accident we discovered that we were in the process of describing this new species independently. This joint contribution comprises the sum total of our investigations

    Complete mitochondrial genome of sea cucumber, Holothuria

    No full text

    A modern soft-bottom, shallow-water crinoid fauna (Echinodermata) from the Great Barrier Reef, Australia

    No full text
    A recent preliminary survey revealed that 12 species of unstalked crinoids occur on a gentle sandy slope (12-18 m depth) at Lizard Island, Great Barrier Reef, Australia; five of which are also found on coral reefs. The other seven appear to constitute a unique assemblage restricted to unconsolidated substrates, where most cling to algae or hide beneath rubble or sponges. Members of this assemblage exhibit all of the basic feeding postures found among reef-dwelling species. However, Comatula rotalaria, which lacks anchoring cirri and bears uniquely differentiated short and long arms, exhibits a posture different from other living crinoids. Quantitative transects reveal apparent depth-related differences in species composition: C. rotalaria dominated the 12 transects in 12-13 m (84% of 82 specimens), while Comatella nigra, Comatula cf. purpurea, Amphimetra cf. tessellata and Zygometra microdiscus accounted for 96% of 54 specimens observed along 12 transects in 16-17 m

    Perforocycloides nathalieae new genus and species, an unusual Silurian cyclocystoid (Echinodermata) from Anticosti Island, Québec, Canada

    Get PDF
    Cyclocystoids are a poorly known, rare, extinct class of bi-facially flattened, disc shaped echinoderms, ranging from the Middle Ordovician to the Early Carboniferous. Articulated cyclocystoids are relatively common in the Ordovician but are rarer in younger strata. Here we describe Perforocycloides nathaliae new genus and species, from the early Silurian of Anticosti Island, Québec, Canada, the first articulated cyclocystoid from the Silurian of North America. This taxon is distinguished from other cyclocystoids by the number of variably sized marginal ossicles, the lack of interseptal plates, and the novelty of pores located in the distal part of the sutures between adjacent marginals on the dorsal surface. These dorsal intermarginal sutural pores led to canals which penetrated the contiguous area of the lateral surface of the marginals and emerged on the ventral surface between the cupules of adjacent marginals. These dorsal intermarginal sutural pores/canals appear to be unique to Perforocycloides and whilst their function is speculative, they provided some form of communication between the dorsal disc and the distal side of the ventral marginals/cupules. Perforocycloides most closely resembles the Ordovician–Silurian genus Zygocycloides, suggesting that this genus may have diversified more widely during the Silurian than previously reported. A review of global Silurian cyclocystoid distribution suggests taxa were geographically confined and that greatest diversity appears to have been located within Baltica. However, it also demonstrates our current limited knowledge. No specimens have been recorded from Gondwana (e.g. Africa, Australia, South America), Siberia, and North and South China, nor are any specimens known confidently anywhere from Přidolí strata.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made
    corecore