12,804 research outputs found
An exactly solvable model of a superconducting to rotational phase transition
We consider a many-fermion model which exhibits a transition from a
superconducting to a rotational phase with variation of a parameter in its
Hamiltonian. The model has analytical solutions in its two limits due to the
presence of dynamical symmetries. However, the symmetries are basically
incompatible with one another; no simple solution exists in intermediate
situations. Exact (numerical) solutions are possible and enable one to study
the behavior of competing but incompatible symmetries and the phase transitions
that result in a semirealistic situation. The results are remarkably simple and
shed light on the nature of phase transitions.Comment: 11 pages including 1 figur
Rapid rotation of micron and submicron dielectric particles measured using optical tweezers
We demonstrate the use of a laser trap (âoptical tweezersâ) and back-focal-plane position detector to measure rapid rotation in aqueous solution of single particles with sizes in the vicinity of 1 ÎŒm. Two types of rotation were measured: electrorotation of polystyrene microspheres and rotation of the flagellar motor of the bacterium Vibrio alginolyticus. In both cases, speeds in excess of 1000 Hz (rev sâ1) were measured. Polystyrene beads of diameter about 1 ÎŒm labelled with smaller beads were held at the centre of a microelectrode array by the optical tweezers. Electrorotation of the labelled beads was induced by applying a rotating electric field to the solution using microelectrodes. Electrorotation spectra were obtained by varying the frequency of the applied field and analysed to obtain the surface conductance of the beads. Single cells of V. alginolyticus were trapped and rotation of the polar sodium-driven flagellar motor was measured. Cells rotated more rapidly in media containing higher concentrations of Na+, and photodamage caused by the trap was considerably less when the suspending medium did not contain oxygen. The technique allows single-speed measurements to be made in less than a second and separate particles can be measured at a rate of several per minute
Representations of the Weyl group and Wigner functions for SU(3)
Bases for SU(3) irreps are constructed on a space of three-particle tensor
products of two-dimensional harmonic oscillator wave functions. The Weyl group
is represented as the symmetric group of permutations of the particle
coordinates of these space. Wigner functions for SU(3) are expressed as
products of SU(2) Wigner functions and matrix elements of Weyl transformations.
The constructions make explicit use of dual reductive pairs which are shown to
be particularly relevant to problems in optics and quantum interferometry.Comment: : RevTex file, 11 pages with 2 figure
Preparation of Dicke States in an Ion Chain
We have investigated theoretically and experimentally a method for preparing
Dicke states in trapped atomic ions. We consider a linear chain of ion
qubits that is prepared in a particular Fock state of motion, . The
phonons are removed by applying a laser pulse globally to the qubits, and
converting the motional excitation to flipped spins. The global nature of
this pulse ensures that the flipped spins are shared by all the target ions
in a state that is a close approximation to the Dicke state \D{N}{m}. We
calculate numerically the fidelity limits of the protocol and find small
deviations from the ideal state for and . We have demonstrated
the basic features of this protocol by preparing the state \D{2}{1} in two
Mg target ions trapped simultaneously with an Al
ancillary ion.Comment: 5 pages, 2 figure
Experimental Determination of the Lorenz Number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12
Nanostructuring has been shown to be an effective approach to reduce the
lattice thermal conductivity and improve the thermoelectric figure of merit.
Because the experimentally measured thermal conductivity includes contributions
from both carriers and phonons, separating out the phonon contribution has been
difficult and is mostly based on estimating the electronic contributions using
the Wiedemann-Franz law. In this paper, an experimental method to directly
measure electronic contributions to the thermal conductivity is presented and
applied to Cu0.01Bi2Te2.7Se0.3, [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and
Bi0.88Sb0.12. By measuring the thermal conductivity under magnetic field,
electronic contributions to thermal conductivity can be extracted, leading to
knowledge of the Lorenz number in thermoelectric materials
Effect of the Pauli principle on photoelectron spin transport in GaAs
In p+ GaAs thin films, the effect of photoelectron degeneracy on spin
transport is investigated theoretically and experimentally by imaging the spin
polarization profile as a function of distance from a tightly-focussed light
excitation spot. Under degeneracy of the electron gas (high concentration, low
temperature), a dip at the center of the polarization profile appears with a
polarization maximum at a distance of about from the center. This
counterintuitive result reveals that photoelectron diffusion depends on spin,
as a direct consequence of the Pauli principle. This causes a concentration
dependence of the spin stiffness while the spin dependence of the mobility is
found to be weak in doped material. The various effects which can modify spin
transport in a degenerate electron gas under local laser excitation are
considered. A comparison of the data with a numerical solution of the coupled
diffusion equations reveals that ambipolar coupling with holes increases the
steady-state photo-electron density at the excitation spot and therefore the
amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents
are predicted to depend on spin under degeneracy (spin Soret currents), but
these currents are negligible except at very high excitation power where they
play a relatively small role. Coulomb spin drag and bandgap renormalization are
negligible due to electrostatic screening by the hole gas
Characterisation of breast cancer infiltrates using monoclonal antibodies to human leucocyte antigens.
Serial frozen sections from eleven patients with malignant breast tumours and five patients with benign disease were studied by indirect immunoperoxidase using a panel of mouse monoclonal antibodies to human leucocyte antigens. More infiltrating leucocytes were seen in tumour sections than those of benign conditions. A considerable proportion of the infiltrating cells were T cells, and more of these were of the suppressor/cytotoxic subset than the helper/inducer subset. The T cells were apparently not all activated as indicated by lower levels of staining with anti HLA-DR than anti-leucocyte antibody. Diffuse staining was sometimes seen with HLA-DR and T cell subset antibodies. Tumour cells did not stain or were only very weakly positive with anti HLA-A, B, C
- âŠ