3,967 research outputs found

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 ÎŒ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 ÎŒ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 ÎŒ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 ÎŒ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    The effect of crystal orientation on the cryogenic strength of hydroxide catalysis bonded sapphire

    Get PDF
    Hydroxide catalysis bonding has been used in gravitational wave detectors to precisely and securely join components of quasi-monolithic silica suspensions. Plans to operate future detectors at cryogenic temperatures has created the need for a change in the test mass and suspension material. Mono-crystalline sapphire is one candidate material for use at cryogenic temperatures and is being investigated for use in the KAGRA detector. The crystalline structure of sapphire may influence the properties of the hydroxide catalysis bond formed. Here, results are presented of studies of the potential influence of the crystal orientation of sapphire on the shear strength of the hydroxide catalysis bonds formed between sapphire samples. The strength was tested at approximately 8 K; this is the first measurement of the strength of such bonds between sapphire at such reduced temperatures. Our results suggest that all orientation combinations investigated produce bonds of sufficient strength for use in typical mirror suspension designs, with average strengths >23 MPa

    A possible dearth of hot gas in galaxy groups at intermediate redshift

    Get PDF
    We examine the X-ray luminosity of galaxy groups in the CNOC2 survey, at redshifts 0.1 < z < 0.6. Previous work examining the gravitational lensing signal of the CNOC2 groups has shown that they are likely to be genuine, gravitationally bound objects. Of the 21 groups in the field of view of the EPIC-PN camera on XMM-Newton, not one was visible in over 100 ksec of observation, even though three of the them have velocity dispersions high enough that they would easily be visible if their luminosities scaled with their velocity dispersions in the same way as nearby groups' luminosities scale. We consider the possibility that this is due to the reported velocity dispersions being erroneously high, and conclude that this is unlikely. We therefore find tentative evidence that groups at intermediate redshift are underluminous relative to their local cousins.Comment: 16 pages, 5 figures, reference added in section 1, typos corrected, published in Ap

    Regulation of Salt Respiration in Carrot Root Slices

    Full text link

    Mechanical loss of a hydroxide catalysis bond between sapphire substrates and its effect on the sensitivity of future gravitational wave detectors

    Get PDF
    Hydroxide catalysis bonds are low mechanical loss joints which are used in the fused silica mirror suspensions of current room temperature interferometric gravitational wave detectors, one of the techniques which was essential to allow the recent detection of gravitational radiation by LIGO. More sensitive detectors may require cryogenic techniques with sapphire as a candidate mirror and suspension material, and thus hydroxide catalysis bonds are under consideration for jointing sapphire. This paper presents the first measurements of the mechanical loss of such a bond created between sapphire substrates and measured down to cryogenic temperatures. The mechanical loss is found to be 0.03±0.01 at room temperature, decreasing to (3±1)×10−4 at 20 K. The resulting thermal noise of the bonds on several possible mirror suspensions is presented

    Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries

    Full text link
    The coalescences of binary black hole (BBH) systems, here taken to be non-spinning, are among the most promising sources for gravitational wave (GW) ground-based detectors, such as LIGO and Virgo. To detect the GW signals emitted by BBHs, and measure the parameters of the source, one needs to have in hand a bank of GW templates that are both effectual (for detection), and accurate (for measurement). We study the effectualness and the accuracy of the two types of parametrized banks of templates that are directly defined in the frequency-domain by means of closed-form expressions, namely 'post-Newtonian' (PN) and 'phenomenological' models. In absence of knowledge of the exact waveforms, our study assumes as fiducial, target waveforms the ones generated by the most accurate version of the effective one body (EOB) formalism. We find that, for initial GW detectors the use, at each point of parameter space, of the best closed-form template (among PN and phenomenological models) leads to an effectualness >97% over the entire mass range and >99% in an important fraction of parameter space; however, when considering advanced detectors, both of the closed-form frequency-domain models fail to be effectual enough in significant domains of the two-dimensional [total mass and mass ratio] parameter space. Moreover, we find that, both for initial and advanced detectors, the two closed-form frequency-domain models fail to satisfy the minimal required accuracy standard in a very large domain of the two-dimensional parameter space. In addition, a side result of our study is the determination, as a function of the mass ratio, of the maximum frequency at which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.

    Potential mechanical loss mechanisms in bulk materials for future gravitational wave detectors

    Full text link
    Low mechanical loss materials are needed to further decrease thermal noise in upcoming gravitational wave detectors. We present an analysis of the contribution of Akhieser and thermoelastic damping on the experimental results of resonant mechanical loss measurements. The combination of both processes allows the fit of the experimental data of quartz in the low temperature region (10 K to 25 K). A fully anisotropic numerical calculation over a wide temperature range (10 K to 300 K) reveals, that thermoelastic damping is not a dominant noise source in bulk silicon samples. The anisotropic numerical calculation is sucessfully applied to the estimate of thermoelastic noise of an advanced LIGO sized silicon test mass.Comment: 7 pages, 3 figures, submitted to Journal of Physics: Conference Series (AMALDI8

    Silicon mirror suspensions for gravitational wave detectors

    Get PDF
    One of the most significant limits to the sensitivity of current, and future, long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test masses and their suspensions. This paper reports results of analytical and experimental studies of the limits to thermal noise performance of cryogenic silicon test mass suspensions set by two constraints on suspension fibre dimensions: the minimum dimensions required to allow conductive cooling for extracting incident laser beam heat deposited in the mirrors; and the minimum dimensions of fibres (set by their tensile strength) which can support test masses of the size envisaged for use in future detectors. We report experimental studies of breaking strength of silicon ribbons, and resulting design implications for the feasibility of suspension designs for future gravitational wave detectors using silicon suspension fibres. We analyse the implication of this study for thermal noise performance of cryogenically cooled silicon suspensions

    Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams

    Get PDF
    We propose using ions and electrons of energy 1 eV–10 eV for neutralizing the charges on the non-conducting or isolated surfaces of high-sensitivity experiments. The mirror surfaces of the test masses of the laser interferometer gravitational observatory are used as an example of the implementation of this method. By alternatively directing beams of positive and negative charges towards the mirror surfaces, we ensure the neutralization of the total charge as well as the equalization of the surface charge distribution to within a few eV of the potential of the ground reference of the vacuum system. This method is compatible with operation in high vacuum, does not require measuring the potential of the mirrors and is expected not to damage sensitive optical surfaces
    • 

    corecore