21 research outputs found

    Preferential Myosin Heavy Chain Isoform B Expression May Contribute to the Faster Velocity of Contraction in Veins versus Arteries

    Get PDF
    Smooth muscle myosin heavy chains occur in 2 isoforms, SMA (slow) and SMB (fast). We hypothesized that the SMB isoform is predominant in the faster-contracting rat vena cava compared to thoracic aorta. We compared the time to half maximal contraction in response to a maximal concentration of endothelin-1 (ET-1; 100 nM), potassium chloride (KCl; 100 mM) and norepinephrine (NE; 10 µM). The time to half maximal contraction was shorter in the vena cava compared to aorta (aorta: ET-1 = 235.8 ± 13.8 s, KCl = 140.0 ± 33.3 s, NE = 19.8 ± 2.7 s; vena cava: ET-1 = 121.8 ± 15.6 s, KCl = 49.5 ± 6.7 s, NE = 9.0 ± 3.3 s). Reverse-transcription polymerase chain reaction supported the greater expression of SMB in the vena cava compared to aorta. SMB was expressed to a greater extent than SMA in the vessel wall of the vena cava. Western analysis determined that expression of SMB, relative to total smooth muscle myosin heavy chains, was 12.5 ± 4.9-fold higher in the vena cava compared to aorta, while SMA was 4.9 ± 1.2-fold higher in the aorta than vena cava. Thus, the SMB isoform is the predominant form expressed in rat veins, providing one possible mechanism for the faster response of veins to vasoconstrictors

    Potent Inhibition of Arterial Smooth Muscle Tonic Contractions by the Selective Myosin II Inhibitor, Blebbistatin

    No full text
    Blebbistatin is reported to be a selective and specific small molecule inhibitor of the myosin II isoforms expressed by striated muscles and nonmuscle (IC50 = 0.5–5 µM) but is a poor inhibitor of purified turkey smooth muscle myosin II (IC50 ~80 µM). We found that blebbistatin potently (IC50 ~3 µM) inhibited the actomyosin ATPase activities of expressed “slow” [smooth muscle myosin IIA (SMA)] and “fast” [smooth muscle myosin IIB (SMB)] smooth muscle myosin II heavy-chain isoforms. Blebbistatin also inhibited the KCl-induced tonic contractions produced by rabbit femoral and renal arteries that express primarily SMA and the weaker tonic contraction produced by the saphenous artery that expresses primarily SMB, with an equivalent potency comparable with that identified for nonmuscle myosin IIA (IC50 ~5 µM). In femoral and saphenous arteries, blebbistatin had no effect on unloaded shortening velocity or the tonic increase in myosin light-chain phosphorylation produced by KCl but potently inhibited β-escin permeabilized artery contracted with calcium at pCa 5, suggesting that cell signaling events upstream from KCl-induced activation of cross-bridges were unaffected by blebbistatin. It is noteworthy that KCl-induced contractions of chicken gizzard were less potently inhibited (IC50 ~20 µM). Adult femoral, renal, and saphenous arteries did not express significant levels of nonmuscle myosin. These data together indicate that blebbistatin is a potent inhibitor of smooth muscle myosin II, supporting the hypothesis that the force-bearing structure responsible for tonic force maintenance in adult mammalian vascular smooth muscle is the cross-bridge formed from the blebbistatin-dependent interaction between actin and smooth muscle myosin II

    A mutant heterodimeric myosin with one inactive head generates maximal displacement

    Get PDF
    Each of the heads of the motor protein myosin II is capable of supporting motion. A previous report showed that double-headed myosin generates twice the displacement of single-headed myosin (Tyska, M.J., D.E. Dupuis, W.H. Guilford, J.B. Patlak, G.S. Waller, K.M. Trybus, D.M. Warshaw, and S. Lowey. 1999. Proc. Natl. Acad. Sci. USA. 96:4402-4407). To determine the role of the second head, we expressed a smooth muscle heterodimeric heavy meromyosin (HMM) with one wild-type head, and the other locked in a weak actin-binding state by introducing a point mutation in switch II (E470A). Homodimeric E470A HMM did not support in vitro motility, and only slowly hydrolyzed MgATP. Optical trap measurements revealed that the heterodimer generated unitary displacements of 10.4 nm, strikingly similar to wild-type HMM (10.2 nm) and approximately twice that of single-headed subfragment-1 (4.4 nm). These data show that a double-headed molecule can achieve a working stroke of approximately 10 nm with only one active head and an inactive weak-binding partner. We propose that the second head optimizes the orientation and/or stabilizes the structure of the motion-generating head, thereby resulting in maximum displacement
    corecore