179 research outputs found

    Experimental and theoretical study of the structures and enthalpies of formation of the synthetic reagents l,3-thiazolidine-2-thione and l,3-oxazolidine-2-thione

    Get PDF
    This paper reports an experimental and a theoretical study of the structures and standard (po = 0.1 MPa) molar enthalpies of formation of the synthetic reagents 1,3-thiazolidine-2-thione [CAS 96-53-7] and 1,3-oxazolidine-2-thione [CAS 5840-81-3]. The enthalpies of combustion and sublimation were measured by rotary bomb combustion calorimetry, and the Knudsen effusion technique and gas-phase enthalpies of formation values at T = 298.15 K of (97.1 ± 4.0) and −(74.4 ± 4.6) kJ·mol−1 for 1,3-thiazolidine-2-thione and 1,3-oxazolidine-2-thione, respectively, were determined. G3-calculated enthalpies of formation are in reasonable agreement with the experimental values. In the solid state, 1,3-thiazolidine-2-thione exists in two polymorphic forms (monoclinic and triclinic) and 1,3-oxazolidine-2-thione exits in the triclinic form. The isostructural nature of these compounds and comparison of their molecular and crystal structures have been analyzed. The experimental X-ray powder diffractograms have been compared with the calculated patterns from their structures for identification of the polymorphic samples used in this study. A comparison of our results with literature thermochemical and structural data for related compounds is also reported.M.T. would like to thank MEC/SEUI, FPU AP2002-0603, Spain, for financial support. A.V.D. thanks the National Science Foundation (CHE-0547566) and the American Heart Association (0855743G) for financial support of this research. The support of the Spanish Ministerio de Educación y Ciencia under Projects CTQ2007-60895/BQU and CTQ2006-10178/BQU is gratefully acknowledged

    Strain Effects in Protonated Carbonyl Compounds. An Experimental and ab Initio Treatment of Acyclic Carboxamides and Ketones

    Get PDF
    Strain effects have been quantitatively evaluated for a set of 22 compounds including ketones (R2CO), carboxamides (RCONH2), and N,N-dimethylcarboxamides (RCONMe2), where R = Me, Et, i-Pr, t-Bu, 1-adamantyl (1-Ad), in their neutral and protonated forms. To this end, use was made of the gas-phase proton affinities and standard enthalpies of formation of these compounds in the gas phase, as determined by Fourier transform ion cyclotron resonance mass spectrometry (FT ICR) and thermochemical techniques, respectively. The structures of 1-AdCOMe and (1-Ad)2CO were determined by X-ray crystallography. Quantum-mechanical calculations, at levels ranging from AM1 to MP2/6-311+G(d,p)//6-31G(d), were performed on the various neutral and protonated species. Constrained space orbital variation (CSOV) calculations were carried out on selected protonated species to further assess the contributions of the various stabilizing factors. Taking neutral and protonated methyl ketones as references, we constructed isodesmic reactions that provided, seemingly for the first time, quantitative measures of strain in the protonated species. A combination of these data with the results of theoretical calculations (which also included several “computational experiments”) lead to a unified, conceptually satisfactory, quantitative description of these effects and their physical link to structural properties of the neutral and protonated species.This work was supported by grants PB 93-0289-C02 and PB-93-0142-C03-01 from the Spanish D.G.I.C.Y.T. Work by H.H. was supported by the Moroccan Ministry of Education and C.S.I.C

    Substituent and ring effects on enthalpies of formation: 2-methyl- and 2-ethylbenzimidazoles versus benzene-and imidazole-derivatives

    Get PDF
    The enthalpies of combustion, heat capacities, enthalpies of sublimation and enthalpies of formation of 2-methylbenzimidazole (2MeBIM) and 2-ethylbenzimidazole (2EtBIM) are reported and the results compared with those of benzimidazole itself (BIM). Theoretical estimates of the enthalpies of formation were obtained through the use of atom equivalent schemes. The necessary energies were obtained in single-point calculations at the B3LYP/6-311+G(d,p) on B3LYP/6-31G* optimized geometries. The comparison of experimental and calculated values of benzenes, imidazoles and benzimidazoles bearing H (unsubstituted), methyl and ethyl groups shows remarkable homogeneity. The energetic group contribution transferability is not followed, but either using it or adding an empirical interaction term, it is possible to generate an enormous collection of reasonably accurate data for different substituted heterocycles (pyrazole-derivatives, pyridine-derivatives, etc.) from the large amount of values available for substituted benzenes and those of the parent (pyrazole, pyridine) heterocycles.We acknowledge the financial support of the DGI/MCyT (project nos. BQU-2003-00976, 01251 and 05827). This work has been partially supported by the DGI project no. BQU-2003-00894. A generous allocation of computational time at the CCC of the Universidad Auto´noma de Madrid is also gratefully acknowledged. Thanks are also due to Instituto de Cooperac¸a˜o Cientı´fica e Tecnolo´gica Internacional (ICCTI), Lisbon, Portugal, and Consejo Superior de Investigaciones Cientı´ficas (CSIC), Madrid, Spain, for a joint research project ICCTI/CSIC. MLPFA thanks Fundac¸a˜o para a Cieˆncia e Tecnologia (FCT), Lisbon, Portugal, for the award of a postdoctoral fellowship (PRAXIS XXI/BPD/16319/98) and MT thanks MECD/SEEU (AP 2002-0603), Spain, for financial support

    Experimental thermochemical study of two 2-alkylbenzimidazole isomers (alkyl = propyl and isopropyl)

    Get PDF
    This paper reports the values of the standard (p∘=0.1 MPa) molar enthalpy of formation in the condensed, at T=298.15 K, for 2-R-benzimidazoles (R=propyl, isopropyl), derived from, the respective enthalpies of combustion in oxygen, measured by static bomb combustion calorimetry and the standard molar enthalpies of sublimation, at T=298.15 K, obtained using Calvet microcalorimetry in the case of 2-isopropylbenzimidazole and, by the variation of vapour pressures, determined by the Knudsen effusion technique, with temperatures between (344 and 365) K for 2-propylbenzimidazole. Heat capacities, in the temperature ranges from T=268 K to near their respective melting temperatures, T=421 K for 2-propylbenzimidazole and T=464 K for 2-isopropylbenzimidazole, were measured with a differential scanning calorimeter. These values were used to derive the standard molar enthalpies of formation, of the two 2-benzimidazole derivatives, in gaseous phase.Thanks are due to Instituto de Cooperação Cientı́fica e Tecnológica Industrial (ICCTI), Lisbon, Portugal, and Consejo Superior de Investigaciones Cientı́ficas (CSIC), Madrid, Spain for a joint research project CSIC/ICCTI; M.L.P.F.A. thanks Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal, for the award of a postdoctoral fellowship (SRFH/BPD/5595/2001). The Spanish DGI/MCyT is acknowledged under projects BQU2000-0252, 0906 and 1497; M.T. thanks MECD/SEEU, AP2002-0603, Spain for financial support

    Substituent effects on enthalpies of formation of nitrogen heterocycles: 2-substituted benzimidazoles and related compounds

    Get PDF
    The enthalpies of combustion, heat capacities, enthalpies of sublimation and enthalpies of formation of 2-tert-butylbenzimidazole (2tBuBIM) and 2-phenylimidazole (2PhIM) are reported and the results compared with those of benzene derivatives and a series of azoles (imidazoles, pyrazoles, benzimidazoles and indazoles). Theoretical estimates of the enthalpies of formation were obtained through the use of atom equivalent schemes. The necessary energies were obtained in single-point calculations at the B3LYP/6-311++G(d,p) on B3LYP/6-31G* optimized geometries. The comparison of experimental and calculated values of all studied compounds bearing H (unsubstituted), methyl (Me) ethyl (Et), propyl (Pr), isopropyl (iPr), tert-butyl (tBu), benzyl (Bn) and phenyl (Ph) groups show remarkable homogeneity. The remarkable consistency of both the calculated and experimental results allows us to predict with reasonable certainty the missing experimental values. The crystal and molecular structure of the 2-benzylbenzimidazole (2BnBIM) has been determined by X-ray analysis. The observed molecular conformation permits the crystal being built up through N−H···N hydrogen bonds and van der Waals contacts between the molecules. An attempt has been made to relate the crystal structure to the enthalpies of sublimation.Thanks are due to Instituto de Cooperac¸a˜o Cientı´fica e Tecnolo´gica International (ICCTI), Lisbon, Portugal, and Consejo Superior de Investigaciones Cientı´ficas (CSIC), Madrid, Spain. L.M.P.F.A. thanks Fundac¸a˜o para a Cieˆncia e Tecnologia (FCT), Lisbon, Portugal, for the award of a postdoctoral fellowship (PRAXIS XXI/BPD/16319/98). This work has also been financed by DGICYT (BQU-2003- 00894, -00976 and -01251)

    Enthalpies of formation of N-substituted pyrazoles and imidazoles

    Get PDF
    Accurate experimental enthalpies of formation measured using static bomb combustion calorimetry, the “vacuum sublimation” drop calorimetry method, and the Knudsen-effusion method are reported for the first time for four azoles:  1-methylimidazole (1MeIMI), 1-methylpyrazole (1MePYR), 1-benzylimidazole (1BnIMI), and 1-benzylpyrazole (1BnPYR). These values and those corresponding to imidazole (1HIMI), pyrazole (1HPYR), 1-ethylimidazole (1EtIMI), 1-ethylpyrazole (1EtPYR), 1-phenylimidazole (1PhIMI), and 1-phenylpyrazole (1PhPYR) are compared with theoretical values using the G2(MP2) and the B3LYP/6-311*G(3df,2p)//6-31G(d) approaches. In general, there is a very good agreement between calculated and experimental values for the series of N-substituted imidazoles, while the agreement is less good for the series of the N-substituted pyrazoles. Experimentally, the gap between the enthalpies of formation of imidazoles and pyrazoles decreases significantly upon N-substitution, while the theoretical estimates indicate that this decrease is smaller.This work has been partially supported by the DGES Projects PB 96-0001-C03-03, PB96-0067, and PB96-0927-C02-01. A generous allocation of computational time at the Centro de Computacio´n Cientı´fica de la Facultad de Ciencias (CCCFC) de la UAM is also gratefully acknowledged. Thanks are due to Junta National de Investigac¸a˜o Cientı´fica e Tecnolo´gica (JNICT), Lisbon, Portugal and Consejo Superior de Investigaciones Cientı´ficas (CSIC), Madrid, Spain, for a joint research project CSIC/JNICT. Financial support from the Praxis XXI, Project 2/2.1/qui/54/94, is acknowledged. L.M.P.F.A. thanks Fundac¸aˆo para a Cieˆncia e Tecnologia, Lisbon, Portugal for the award of a postdoctoral fellowship (Praxis XXI/BDP/16319/98). J.F.L. acknowledges funding from “Dow Chemical Company” for partial support of his thermochemical studies

    Experimental and Theoretical Study of the Structures and Enthalpies of Formation of the Synthetic Reagents 1,3-Thiazolidine-2-thione and 1,3-Oxazolidine-2-thione

    Get PDF
    This paper reports an experimental and a theoretical study of the structures and standard (p o ) 0.1 MPa) molar enthalpies of formation of the synthetic reagents 1,3-thiazolidine-2-thione and 1,3-oxazolidine-2-thione . The enthalpies of combustion and sublimation were measured by rotary bomb combustion calorimetry, and the Knudsen effusion technique and gas-phase enthalpies of formation values at T ) 298.15 K of (97.1 ( 4.0) and -(74.4 ( 4.6) kJ · mol -1 for 1,3-thiazolidine-2-thione and 1,3-oxazolidine-2-thione, respectively, were determined. G3-calculated enthalpies of formation are in reasonable agreement with the experimental values. In the solid state, 1,3-thiazolidine-2-thione exists in two polymorphic forms (monoclinic and triclinic) and 1,3-oxazolidine-2-thione exits in the triclinic form. The isostructural nature of these compounds and comparison of their molecular and crystal structures have been analyzed. The experimental X-ray powder diffractograms have been compared with the calculated patterns from their structures for identification of the polymorphic samples used in this study. A comparison of our results with literature thermochemical and structural data for related compounds is also reported

    Microcalorímetro de combustión

    Get PDF
    Referencia OEPM: P200001506.-- Fecha de solicitud: 15/06/2000.-- Titular: Consejo Superior de Investigaciones Científicas (CSIC).Microcalorímetro de combustión caracterizado por ser de tipo isoperibol que consta de: un baño termostático, que contiene agua agitada y termorregulada, con una cámara submarina hecha de acero inoxidable. Una vasija calorimétrica con un volumen interno de, aproximadamente, 0.59 dm3. Tanto la vasija calorimétrica como la camisa, tienen forma elíptica y permiten que por todas partes haya una separación entre las paredes de, aproximadamente, 10 mm de aire. Las paredes están pulidas para evitar radiación térmica. En la vasija se sitúa una bomba de combustión.Peer reviewe

    The design, construction and testing of a microcombustion calorimeter suitable for organic compounds containing C, H and O

    No full text
    To obtain reliable standard energies of combustion with small amounts of C, H, O compounds, a new microcombustion calorimetry system has been set up. The design, construction, calibration and measurement experiments are described. The system includes a commercial combustion bomb with an internal volume of 22 cm3. Samples of around 80 mg are suitable if one wants to retain the same levels of accuracy and reproducibility as those in macrocombustion experiments. Calibration of the calorimeter was performed using benzoic acid. ε(calorimeter) = 2083.74±0.48JK-1 was obtained. Combustion measurements using m-methoxybenzoic acid were made in order to verify the chemistry of the combustion process involved in the corresponding analysis of results and the accuracy of the measurement of combustion energy. The uncertainty of the results shows that the instrument described and the experimental procedure used for the determination of enthalpies of formation of compounds containing C, H and O provide a high reliability.The support of the Spanish DGICYT under project PB96-0927-CO2-01 is gratefully acknowledged.Peer reviewe

    The thermochemistry of alkanethiols and thioethers. Estimation of the enthalpies of formation of 1,3-dithiapropane and 1,3,5-trithiapentane

    No full text
    We have carried out a study on the thermochemistry of alkanethiols and thioethers. Relationships between the enthalpies of formation of alkanes, alkanethiols, and thioethers are discussed with the purpose of deriving different group interconversion contributions that permit the estimation of unknown ∆fH 0 m(g) values for alkanethiols and thioethers from known values of alkanes. We have also carried out a theoretical study at the G2(MP2), G2, and G3 levels, calculating the enthalpies of formation of two compounds, 1,3-dithiapropane and 1,3,5-trithiapentane, and comparing them with the values previously estimated
    corecore