11 research outputs found
Method for orthorectification of terrestrial radar maps
International audienceThe vehicle-based PELICAN radar system is used in the context of mobile mapping. The R-SLAM algorithm allows simultaneous retrieval of the vehicle trajectory and of the map of the environment. As the purpose of PELICAN is to provide a means for gathering spatial information, the impact of distortion caused by the topography is not negligible. This article proposes an orthorectification process to correct panoramic radar images and the consequent R-SLAM trajectory and radar map. The a priori knowledge of the area topography is provided by a digital elevation model. By applying the method to the data obtained from a path with large variations in altitude it is shown that the corrected panoramic radar images are contracted by the orthorectification process. The efficiency of the orthorectification process is assessed firstly by comparing R-SLAM trajectories to a GPS trajectory and secondly by comparing the position of Ground Control Points on the radar map with their GPS position. The RMS positioning error moves from 5.56 m for the raw radar map to 0.75 m for the orthorectified radar map
Methods for FMCW radar map georeferencing
International audienceIn a context of mobile environment mapping, a vehicle-based radar system, K2Pi, has been developed. A mapping of the environment is carried out from the radar datasets. Given the specificities of radar maps, the main problem at this stage is to find a method to georeference these maps. This article proposes three radar map georeferencing methods. The first method is a typical manual selection of a set of control point pairs. The second method consists of matching the relative trajectory computed by a specific radar algorithm with a trajectory recorded from absolute DGPS recording. Finally, the third method, inspired by the image-to-image approach, is based on Fourier-Mellin transform which automatically registers the radar map with respect to a georeferenced aerial photograph. Successfully tested on radar datasets, this method could be applied to many other types of data
Range and Vision Sensors Fusion for Outdoor 3D Reconstruction.
International audienceno abstrac
Radar and vision sensors calibration for outdoor 3D reconstruction
International audienceno abstrac
Ambient awareness for agricultural robotic vehicles
In the last few years, robotic technology has been increasingly employed in agriculture to develop intelligent vehicles that can improve productivity and competitiveness. Accurate and robust environmental perception is a critical requirement to address unsolved issues including safe interaction with field workers and animals, obstacle detection in controlled traffic applications, crop row guidance, surveying for variable rate applications, and situation awareness, in general, towards increased process automation. Given the variety of conditions that may be encountered in the field, no single sensor exists that can guarantee reliable results in every scenario. The development of a multi-sensory perception system to increase the ambient awareness of an agricultural vehicle operating in crop fields is the objective of the Ambient Awareness for Autonomous Agricultural Vehicles (QUAD-AV) project. Different onboard sensor technologies, namely stereovision, LIDAR, radar, and thermography, are considered. Novel methods for their combination are proposed to automatically detect obstacles and discern traversable from non-traversable areas. Experimental results, obtained in agricultural contexts, are presented showing the effectiveness of the proposed methods
Non thermal 2.45Â GHz electromagnetic exposure causes rapid changes in Arabidopsis thaliana metabolism
International audienceNumerous studies report different types of responses following exposure of plants to high frequency electromagnetic fields (HF-EMF). While this phenomenon is related to tissue heating in animals, the situation is much less straightforward in plants where metabolic changes seem to occur without tissue temperature increase. We have set up an exposure system allowing reliable measurements of tissue heating (using a reflectometric probe and thermal imaging) after a long exposure (30 min) to an electromagnetic field of 2.45 GHz transmitted through a horn antenna (about 100 V m−1 at the plant level). We did not observe any heating of the tissues, but we detected rapid increases (60 min) in the accumulation of transcripts of stress-related genes (TCH1 and ZAT12 transcription factor) or involved in ROS metabolism (RBOHF and APX1). At the same time, the amounts of hydrogen peroxide and dehydroascorbic acid increased while glutathione (reduced and oxidized forms), ascorbic acid, and lipid peroxidation remained stable. Therefore, our results unambiguously show that molecular and biochemical responses occur rapidly (within 60min) in plants after exposure to an electromagnetic field, in absence of tissue heating
Projet IMPALA
L’objectif du projet IMPALA est d’évaluer l’apport du radar comme solution alternative aux moyens de perception en robotique mobile d’extérieur. Cet article illustre à travers une application de localisation et de cartographie simultanées (SLAM), les potentialités d’un radar panoramique à modulation de fréquence (FMCW) qui a été développé au cours du projet. Donnant accès à l’information de distance et de vitesse des entités mobiles présentes dans l’environnement, le radar permet d’envisager des applications de détection et de suivi d’objets mobiles (DATMO) dont un premier résultat est présenté ici.The main objective of the project IMPALA is to demonstrate that radar technology is an alternative solution to classical perception systems used in outdoor mobile robotics. This paper presents the rotating FMCW radar developed during the project and results from the combined use of radar and "Simultaneous Localization And Mapping" (SLAM) techniques in outdoor environment. Range and velocity from mobile objects can be extracted, which lead to future applications of DATMO (Detection And Tracking of Moving Objects) the first results are presented here