30 research outputs found

    CRY2 Is Associated with Rapid Cycling in Bipolar Disorder Patients

    Get PDF
    Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.Four CRY2 SNPs spanning from intron 2 to downstream 3'UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006-0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3-1.4, P = 0.03-0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder

    Increasing the Dielectric Constant of Organic Materials for Photovoltaics

    No full text
    This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides
    corecore