505 research outputs found

    Mott transition in Cr-doped V2O3 studied by ultrafast reflectivity: electron correlation effects on the transient response

    Full text link
    The ultrafast response of the prototype Mott-Hubbard system (V1-xCrx)2O3 was systematically studied with fs pump-probe reflectivity, allowing us to clearly identify the effects of the metal-insulator transition on the transient response. The isostructural nature of the phase transition in this material made it possible to follow across the phase diagram the behaviour of the detected coherent acoustic wave, whose average value and lifetime depend on the thermodynamic phase and on the correlated electron density of states. It is also shown how coherent lattice oscillations can play an important role in some changes affecting the ultrafast electronic peak relaxation at the phase transition, changes which should not be mistakenly attributed to genuine electronic effects. These results clearly show that a thorough understanding of the ultrafast response of the material over several tenths of ps is necessary to correctly interpret its sub-ps excitation and relaxation regime, and appear to be of general interest also for other strongly correlated materials.Comment: 6 pages, 3 figures. Europhysics Letters (in press

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure

    Superadiabatic transitions in quantum molecular dynamics

    Get PDF
    We study the dynamics of a molecule’s nuclear wave function near an avoided crossing of two electronic energy levels for one nuclear degree of freedom. We derive the general form of the Schrödinger equation in the nth superadiabatic representation for all n є N. Using these results, we obtain closed formulas for the time development of the component of the wave function in an initially unoccupied energy subspace when a wave packet travels through the transition region. In the optimal superadiabatic representation, which we define, this component builds up monotonically. Finally, we give an explicit formula for the transition wave function away from the avoided crossing, which is in excellent agreement with high-precision numerical calculations

    Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Full text link
    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.Comment: 7 pages, 7 figure

    Facultative Hyperparasitism: Extreme Survival Behaviour of the Primary Solitary Ectoparasitoid, Dinarmus basalis

    Get PDF
    This study investigated the egg-laying behaviour of ectoparsitoid, Dinarmus basalis Rondani (Hymenoptera: Pteromalidae), females when faced with a prolonged deprivation of suitable hosts leading to extreme ‘oviposition pressure’. The egg-laying behaviour of virgin D. basalis females was tested with Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) hosts previously parasitized by the conspecific females in which the developing larvae had reached the last larval instar (L5) or pupae. The hyperparasitism did not prevent the occurrence of superparasitism, but only one D. basalis egg from a hyperparasitized D. basalis L5 larvae reached the adult stage due to the solitary behaviour of the D. basalis larvae. Under these experimental conditions, 60.78% of the D. basalis adults emerging from larvae were miniaturized due to the depletion of host resources

    Angular momentum evolution in laser-plasma accelerators

    Get PDF
    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, but its origin was not established. Here we identify one source of angular momentum growth and we present experimental results showing that the angular momentum content evolves during the acceleration

    Betatron emission as a diagnostic for injection and acceleration mechanisms in laser-plasma accelerators

    Full text link
    Betatron x-ray emission in laser-plasma accelerators is a promising compact source that may be an alternative to conventional x-ray sources, based on large scale machines. In addition to its potential as a source, precise measurements of betatron emission can reveal crucial information about relativistic laser-plasma interaction. We show that the emission length and the position of the x-ray emission can be obtained by placing an aperture mask close to the source, and by measuring the beam profile of the betatron x-ray radiation far from the aperture mask. The position of the x-ray emission gives information on plasma wave breaking and hence on the laser non-linear propagation. Moreover, the measurement of the longitudinal extension helps one to determine whether the acceleration is limited by pump depletion or dephasing effects. In the case of multiple injections, it is used to retrieve unambiguously the position in the plasma of each injection. This technique is also used to study how, in a capillary discharge, the variations of the delay between the discharge and the laser pulse affect the interaction. The study reveals that, for a delay appropriate for laser guiding, the x-ray emission only occurs in the second half of the capillary: no electrons are injected and accelerated in the first half.Comment: 8 pages, 6 figures. arXiv admin note: text overlap with arXiv:1104.245

    Internal-strain mediated coupling between polar Bi and magnetic Mn ions in the defect-free quadruple-perovskite BiMn3_3Mn4_4O12_{12}

    Full text link
    By means of neutron powder diffraction, we investigated the effect of the polar Bi3+^{3+} ion on the magnetic ordering of the Mn3+^{3+} ions in BiMn3_3Mn4_4O12_{12}, the counterpart with \textit{quadruple} perovskite structure of the \textit{simple} perovskite BiMnO3_3. The data are consistent with a \textit{noncentrosymmetric} spacegroup ImIm which contrasts the \textit{centrosymmetric} one I2/mI2/m previously reported for the isovalent and isomorphic compound LaMn3_3Mn4_4O12_{12}, which gives evidence of a Bi3+^{3+}-induced polarization of the lattice. At low temperature, the two Mn3+^{3+} sublattices of the AA' and BB sites order antiferromagnetically (AFM) in an independent manner at 25 and 55 K, similarly to the case of LaMn3_3Mn4_4O12_{12}. However, both magnetic structures of BiMn3_3Mn4_4O12_{12} radically differ from those of LaMn3_3Mn4_4O12_{12}. In BiMn3_3Mn4_4O12_{12} the moments MA\textbf{M}_{A'} of the AA' sites form an anti-body AFM structure, whilst the moments \textbf{M}B_{B} of the BB sites result from a large and \textit{uniform} modulation ±MB,b\pm \textbf{M}_{B,b} along the b-axis of the moments \textbf{M}B,ac_{B,ac} in the acac-plane. The modulation is strikingly correlated with the displacements of the Mn3+^{3+} ions induced by the Bi3+^{3+} ions. Our analysis unveils a strong magnetoelastic coupling between the internal strain created by the Bi3+^{3+} ions and the moment of the Mn3+^{3+} ions in the BB sites. This is ascribed to the high symmetry of the oxygen sites and to the absence of oxygen defects, two characteristics of quadruple perovskites not found in simple ones, which prevent the release of the Bi3+^{3+}-induced strain through distortions or disorder. This demonstrates the possibility of a large magnetoelectric coupling in proper ferroelectrics and suggests a novel concept of internal strain engineering for multiferroics design.Comment: 9 pages, 7 figures, 5 table
    corecore