364 research outputs found

    Phenology satellite experiment

    Get PDF
    There are no author-identified significant results in this report

    Applications of aerospace technology in biology and medicine

    Get PDF
    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects

    A new fireworm (Amphinomidae) from the Cretaceous of Lebanon identified from three-dimensionally preserved myoanatomy

    Get PDF
    © 2015 Parry et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Topics in Quantum Computers

    Full text link
    I provide an introduction to quantum computers, describing how they might be realized using language accessible to a solid state physicist. A listing of the minimal requirements for creating a quantum computer is given. I also discuss several recent developments in the area of quantum error correction, a subject of importance not only to quantum computation, but also to some aspects of the foundations of quantum theory.Comment: 22 pages, Latex, 1 eps figure, Paper to be published in "Mesoscopic Electron Transport", edited by L. Kowenhoven, G. Schoen and L. Sohn, NATO ASI Series E, Kluwer Ac. Publ., Dordrecht. v2: typos in refrences fixe

    Predictive Model for Human-Unmanned Vehicle Systems

    Get PDF
    Advances in automation are making it possible for a single operator to control multiple unmanned vehicles. However, the complex nature of these teams presents a difficult and exciting challenge for designers of human–unmanned vehicle systems. To build such systems effectively, models must be developed that describe the behavior of the human–unmanned vehicle team and that predict how alterations in team composition and system design will affect the system’s overall performance. In this paper, we present a method for modeling human–unmanned vehicle systems consisting of a single operator and multiple independent unmanned vehicles. Via a case study, we demonstrate that the resulting models provide an accurate description of observed human-unmanned vehicle systems. Additionally, we demonstrate that the models can be used to predict how changes in the human-unmanned vehicle interface and the unmanned vehicles’ autonomy alter the system’s performance.Lincoln Laborator

    Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    Get PDF
    International audienceA free-volume model of the dynamic viscosity and the self-diffusion coefficients was discussed. The temperature-pressure variations of the dynamic viscosity and the self-diffusion coefficients of small molecules were predicted. The compounds, carbon tetrachloride, cyclohexane, benzene, chlorotrifluoromethane, tetramethylsilane and methylcyclohexane were used for the investigation. The relation between microstructure, free volume and different complex thermophysical properties were emphasized by the model

    Role of Cell-to-Cell Variability in Activating a Positive Feedback Antiviral Response in Human Dendritic Cells

    Get PDF
    In the first few hours following Newcastle disease viral infection of human monocyte-derived dendritic cells, the induction of IFNB1 is extremely low and the secreted type I interferon response is below the limits of ELISA assay. However, many interferon-induced genes are activated at this time, for example DDX58 (RIGI), which in response to viral RNA induces IFNB1. We investigated whether the early induction of IFNBI in only a small percentage of infected cells leads to low level IFN secretion that then induces IFN-responsive genes in all cells. We developed an agent-based mathematical model to explore the IFNBI and DDX58 temporal dynamics. Simulations showed that a small number of early responder cells provide a mechanism for efficient and controlled activation of the DDX58-IFNBI positive feedback loop. The model predicted distributions of single cell responses that were confirmed by single cell mRNA measurements. The results suggest that large cell-to-cell variation plays an important role in the early innate immune response, and that the variability is essential for the efficient activation of the IFNB1 based feedback loop

    Economic Analysis of Carnegie Mellon University

    Get PDF
    Carnegie Mellon University is a private research institution of higher education that is housed in a city that has undergone, and is still undergoing, the change from a manufacturing hub to a center of knowledge enterprise. Although colleges and universities are part of a local oligopoly, CMU is a global institution which considers its peers to be among the elite institutions, including the University of Pennsylvania, Stanford University, and MIT. Amongst its peers, CMU is on the lower end of the undergraduate student demand spectrum, and it pays its professors significantly less than other great institutions. While CMU is not at risk of low student demand, it faces the same risk of faculty loss to other elite institutions as public institutions face losing their professors to CMU. As a global institution, CMU is affected by exchange rates, and the weak dollar makes a CMU education cheaper to foreign students. However, with the decrease in government funding, CMU, like other higher education institutions, has been forced to look elsewhere for revenue – primarily through tuition increases, private donors, and auxiliary services, to maintain its strong student body, elite faculty, and abundance of resources. While no tentirely shielded from vulnerability, CMU appears to face a sustained future, as long as it is able to continue to adapt to the changing society and economic climate

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page
    corecore