91 research outputs found

    Single and double qubit gates by manipulating degeneracy

    Full text link
    A novel mechanism is proposed for single and double qubit state manipulations in quantum computation with four-fold degenerate energy levels. The principle is based on starting with a four fold degeneracy, lifting it stepwise adiabatically by a set of control parameters and performing the quantum gate operations on non-degenerate states. A particular realization of the proposed mechanism is suggested by using inductively coupled rf-squid loops in the macroscopic quantum tunnelling regime where the energy eigen levels are directly connected with the measurable flux states. The one qubit and two qubit controlled operations are demonstrated explicitly. The appearance of the flux states also allows precise read-in and read-out operations by the measurement of flux.Comment: 6 pages + 5 figures (separately included

    Fluxoid dynamics in superconducting thin film rings

    Full text link
    We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.Comment: 9 pages, 10 figures, fixed typo

    Neonatal Genetic Variation in Steroid Metabolism and Key Respiratory Function Genes and Perinatal Outcomes in Single and Multiple Courses of Corticosteroids

    Get PDF
    To evaluate the association of steroid metabolism and respiratory gene polymorphisms in neonates exposed to antenatal corticosteroids (ACS) with respiratory outcomes, small for gestational age (SGA) and response to repeat ACS

    Association between Features of Spontaneous Late Preterm Labor and Late Preterm Birth

    Get PDF
    Objective This study aimed to evaluate the association between clinical and examination features at admission and late preterm birth. Study Design The present study is a secondary analysis of a randomized trial of singleton pregnancies at 34 0/7 to 36 5/7 weeks' gestation. We included women in spontaneous preterm labor with intact membranes and compared them by gestational age at delivery (preterm vs. term). We calculated a statistical cut-point optimizing the sensitivity and specificity of initial cervical dilation and effacement at predicting preterm birth and used multivariable regression to identify factors associated with late preterm delivery. Results A total of 431 out of 732 (59%) women delivered preterm. Cervical dilation ≥ 4 cm was 60% sensitive and 68% specific for late preterm birth. Cervical effacement ≥ 75% was 59% sensitive and 65% specific for late preterm birth. Earlier gestational age at randomization, nulliparity, and fetal malpresentation were associated with late preterm birth. The final regression model including clinical and examination features significantly improved late preterm birth prediction (81% sensitivity, 48% specificity, area under the curve = 0.72, 95% confidence interval [CI]: 0.68-0.75, and p -value < 0.01). Conclusion Four in 10 women in late-preterm labor subsequently delivered at term. Combination of examination and clinical features (including parity and gestational age) improved late-preterm birth prediction
    corecore