25 research outputs found

    Revisiting the middle molecule hypothesis of uremic toxicity: A systematic review of beta 2 microglobulin population kinetics and large scale modeling of hemodialysis trials in silico

    Get PDF
    Background Beta-2 Microglobulin (β2M) is a prototypical "middle molecule" uremic toxin that has been associated with a higher risk of death in hemodialysis patients. A quantitative description of the relative importance of factors determining β2M concentrations among patients with impaired kidney function is currently lacking. Methods Herein we undertook a systematic review of existing studies reporting patient level data concerning generation, elimination and distribution of β2M in order to develop a population model of β2M kinetics. We used this model and previously determined relationships between predialysis β2M concentration and survival, to simulate the population distribution of predialysis β2M and the associated relative risk (RR) of death in patients receiving conventional thrice-weekly hemodialysis with low flux (LF) and high flux (HF) dialyzers, short (SD) and long daily (LD) HF hemodialysis sessions and on-line hemodiafiltration at different levels of residual renal function (RRF). Results We identified 9 studies of 106 individuals and 156 evaluations of or more compartmental kinetic parameters of β2M. These studies used a variety of experimental methods to determine β2M kinetics ranging from isotopic dilution to profiling of intra/inter dialytic concentration changes. Most of the patients (74/106) were on dialysis with minimal RRF, thus facilitating the estimation of non-renal elimination kinetics of β2M. In large scale (N = 10000) simulations of individuals drawn from the population of β2M kinetic parameters, we found that, higher dialytic removal materially affects β2M exposures only when RRF (renal clearance of β2M) was below 2 ml/min. In patients initiating conventional HF hemodialysis, total loss of RRF was predicted to be associated with a RR of death of more than 20%. Hemodiafiltration and daily dialysis may decrease the high risk of death of anuric patients by 10% relative to conventional, thrice weekly HF dialysis. Only daily long sessions of hemodialysis consistently reduced mortality risk between 7-19% across the range of β2M generation rate. Conclusions Preservation of RRF should be considered one of the therapeutic goals of hemodialysis practice. Randomized controlled trials of novel dialysis modalities may require large sample sizes to detect an effect on clinical outcomes even if they enroll anuric patients. The developed population model for β2M may allow personalization of hemodialysis prescription and/ or facilitate the design of such studies by identifying patients with higher β2M generation rate

    Dialyzer reuse and outcomes of high flux dialysis

    Get PDF
    Background: The bulk of randomized trial evidence for the expanding use of High Flux (HF) hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO) allowed, while the other (Membrane Outcomes Permeability, MPO) excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF) dialyzers. Methods: Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M) concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO. Findings: In HEMO, minimally reused (< 6 times) HF dialyzers were associated with a hazard ratio (HR) of 0.67 (95% confidence interval, 95%CI: 0.48-0.92, p = 0.015), 0.64 (95%CI: 0.44-0.95, p = 0.03), 0.61 (95%CI: 0.41-0.90, p = 0.012), 0.53 (95%CI: 0.28-1.02, p = 0.057) relative to minimally reused LF ones for all cause, cardiovascular, cardiac and infectious mortality respectively. These relationships reversed for extensively reused membranes (p for interaction between reuse and flux < 0.001, p = 0.005) for death from all cause and cardiovascular causes, while similar trends were noted for cardiac and infectious mortality (p of interaction between reuse and flux of 0.10 and 0.08 respectively). Reduction of β2M explained only 1/3 of the effect of minimally reused HF dialyzers on all cause mortality, while non-β2M related factors explained the apparent attenuation of the benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78) for non-reused HF dialyzers compared with non-reused LF membranes. Conclusions: This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of HF dialysis and the reuse process on dialyzers may suggest novel biomarkers for uremic toxicity and may accelerate membrane technology innovations that will improve patient outcomes

    Objective and subjective sleep disorders in automated peritoneal dialysis

    Get PDF
    Background: Automated peritoneal dialysis (APD) is one of the fastest growing dialysis modalities. It is unknown whether sleep and mood are disturbed while performing repeated overnight exchanges. Objectives: In this report, we aim to describe and compare the prevalence of sleep-disordered breathing (SDB), periodic limb movements (PLMS), poor sleep quality (SQ), and depression among APD patients compared with stages 3b-5 (estimated glomerular filtration rate ≤44 ml/min/1.73 m2) chronic kidney disease (CKD) and hemodialysis (HD) patients. Design: This is a cross-sectional, descriptive study. Setting: Study participants were recruited from outpatient nephrology clinics, local dialysis centers, and the Thomas E. Starzl Transplant Institute in Western Pennsylvania between April 2004 and July 2009. Patients: There were 186 participants in this study including 22 APD patients, 89 CKD patients, and 75 HD patients. Measurements: In-home polysomnography was performed and two questionnaires were completed, the Pittsburgh Sleep Quality Index (PSQI) and the Patient Health Questionnaire-9 (PHQ-9). Methods: SDB and PLMS were quantified by in-home unattended polysomnography; poor SQ was defined by a score >5 on the PSQI, and the presence of moderate to severe depression was defined by a score >5 on the PHQ-9. Results: The APD patients had a median age of 37.5 years, were predominantly female (72.7 %), and had a median body mass index (BMI) of 23.8 kg/m2. In univariate analyses, APD patients had significantly lower apnea-hypopnea index compared to HD patients by 12.2 points (likelihood ratio test p = 0.008) and revealed the least percent of TST with nocturnal hypoxemia compared to CKD patients by 2.7 points, respectively (likelihood ratio test p = 0.01). The APD group had also significantly greater stages 3 to 4 sleep compared to the CKD patients by 8.6 points (likelihood ratio test p = 0.009). In multivariate analyses and after adjustment for age, gender, race, and BMI, both APD and HD patients had higher average PSQI scores than CKD patients by 2.54 and 2.22 points, respectively (likelihood ratio test p = 0.005). No other comparisons of sleep parameters among groups reached statistical significance. Limitations: The limitations of this study are the small sample size of the APD population and the demographic and clinical differences among the three study groups. Conclusions: Despite differences in univariate analyses, after multivariate adjustment, APD patients had similar sleep parameters and sleep architecture and as poor SQ and symptoms of depression as HD patients. Future studies with larger APD cohorts are needed
    corecore