23 research outputs found

    Deconvolution of remotely sensed spectral mixtures for retrieval of LAI, fAPAR and soil brightness

    Full text link
    Linear mixture models have been used to invert spectral reflectances of targets at the Earth's surface into proportions of plant and soil components. However, operational use of mixture models has been limited by a lack of biophysical interpretation of the results. The main objectives of this study were (1) to relate the deconvolved components of mixture model with biophysical properties of vegetation and soil at the surface and (2) to apply the mixture model results to remotely sensed imagery. A radiative transfer model (SAIL: Scattering by Arbitrarily Inclined Leaves) was used to generate reflectance 'mixtures' from leaf and bare soil spectral measurements made at HAPEX-Sahel (Hydrological Atmospheric Pilot EXperiment) study sites. The SAIL model was used to create canopy reflectances and fractions of absorbed photosynthetically active radiation (fAPAR) for a range of mixed targets with varying leaf area index (LAI) and soils. A spectral mixture model was used to deconvolve the simulated reflectance data into component fractions, which were then calibrated to the SAIL-generated LAI, fAPAR and soil brightness. The calibrated relationships were validated with observational ground data (LAI, fAPAR and reflectance) measured at the HAPEX Sahel fallow bush/grassland, fallow grassland and millet sites. Both the vegetation and soil component fractions were found to be dependent upon soil background brightness, such that inclusion of the soil fraction information significantly improved the derivation of vegetation biophysical parameters. Soil brightness was also shown to be a useful parameter to infer soil properties. The deconvolution methodology was then applied to a nadir image of a HAPEX-Sahel site measured by the Advanced Solid State Array Spectroradiometer (ASAS). Site LAI and fAPAR were successfully estimated by combining the fractional estimates of vegetation and soils, obtained through deconvolution of the ASAS image, with the calibrated relationships between vegetation fraction, LAI and fAPAR, obtained from the SAIL data

    Shortwave radiation budget of Sahelian vegetation: 1. Techniques of measurement and results during HAPEX-Sahel

    Full text link
    Shortwave radiative budgets of Sahelian savannas and a millet crop were measured during the 1992 HAPEX-Sahel field experiment, in Niger, West Africa. Measurements were conducted on four land cover types: shrub fallow, grass fallow, degraded shrubland, and a millet field. Each land unit was equipped with sets of sensors to measure the photosynthetically active radiation (PAR) and near-infrared (NIR) radiative fluxes within the canopies, and were operated throughout the entire growing season. Daily fractional PAR and NIR interception by vegetation was rather low (less than 60% and 30% for natural vegetation and crop, respectively). The sparse vegetation and bright sandy soils meant that the PAR absorption and interception were similar (they were equal at a value of approximately 20%). The albedo of the plots varied little diurnally and seasonally, and was strongly affected by the reflection from the soil. The interception and absorption and, to a lesser degree, the albedo exhibited distinct directional effects related to solar zenith angle. © 1996 Elsevier Science B.V. All rights reserved
    corecore