16 research outputs found

    Modeling and design for energy-efficient spintronic logic devices and circuits

    Get PDF
    The objective of the proposed research is the modeling and the design of energy-efficient and scalable novel spintronic devices. Over the past two decades, spintronic devices have achieved special status due to their advantages in terms of low-voltage operation, smaller footprint area, non-volatile memory, and compatibility with CMOS technology. To design efficient spin-based systems, researchers require the precise modeling of the physics of nanomagnets, piezoelectrics, thermal noise, and metallic nanowires. Using the models developed during the research, spintronic logic devices comprised of hybrid magnetic and piezoelectric structures are proposed. The delay, energy dissipation, and footprint area of the proposed devices are analyzed. Moreover, the proposed devices are used as building blocks to propose spin-based logic gates, pattern and image recognition circuits, long-range interconnects, interface circuits, and coupled-oscillators. The performance of the proposed circuits is benchmarked against CMOS and other spin-based circuits, which shows improved performance, especially in implementing non-Boolean applications and interface circuits.Ph.D

    Hybrid Piezoelectric-Magnetic Neurons: A Proposal for Energy-Efficient Machine Learning

    Full text link
    This paper proposes a spintronic neuron structure composed of a heterostructure of magnets and a piezoelectric with a magnetic tunnel junction (MTJ). The operation of the device is simulated using SPICE models. Simulation results illustrate that the energy dissipation of the proposed neuron compared to that of other spintronic neurons exhibits 70% improvement. Compared to CMOS neurons, the proposed neuron occupies a smaller footprint area and operates using less energy. Owing to its versatility and low-energy operation, the proposed neuron is a promising candidate to be adopted in artificial neural network (ANN) systems.Comment: Submitted to: ACM Southeast '1

    A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity

    Get PDF
    Due to their small dimensions, electrophysiology on thin and intricate axonal branches in support of understanding their role in normal and diseased brain function poses experimental challenges. To reduce experimental complexity, we coupled microelectrode arrays (MEAs) to bi-level microchannel devices for the long-term in vitro tracking of axonal morphology and activity with high spatiotemporal resolution. Our model allowed the long-term multisite recording from pure axonal branches in a microscopy-compatible environment. Compartmentalizing the network structure into interconnected subpopulations simplified access to the locations of interest. Electrophysiological data over 95 days in vitro (DIV) showed an age-dependent increase of axonal conduction velocity, which was positively correlated with, but independent of evolving burst activity over time. Conduction velocity remained constant at chemically increased network activity levels. In contrast, low frequency (1 Hz, 180 repetitions) electrical stimulation of axons or network subpopulations evoked amplitude-dependent direct (5-35 ms peri-stimulus) and polysynaptic (35-1,000 ms peri-stimulus) activity with temporarily (250 mV) in microchannels when compared with those reported for unconfined cultures (>800 mV). The experimental paradigm may lead to new insights into stimulation-induced axonal plasticity

    Morphology, Hardness, and Wear Properties of Ni-Base Composite Coating Containing Al Particle

    No full text
    Ni–Mo/Al composite coatings were obtained by electrodeposition from a Ni–Mo plating bath containing suspended Al particles. The factors including temperature, current density, and stirring rate affecting coating composition, wear, roughness, and morphology have been studied. It was found that properties such as hardness, roughness, wear, and the Al particle content showed parabolic behavior when changing each parameter. That means that there is a critical value for the mentioned parameters at which the properties of coatings become maximal

    Heavy metal pollution affected by human activities and different land-use in urban topsoil: A case study in Rafsanjan city, Kerman province, Iran

    No full text
    The excessive input of trace elements into urban soil has become one of the most important concerns in industrial and crowded cities all over the world. The contamination of urban soils can affect the health of people living in urban areas, and the surrounding ecosystems. Current study was conducted to assess the effects of human activities as well as different land-use on accumulation of trace elements in urban topsoil and also identify the potential risks to human health in Rafsanjan (Iran). A total of 100 topsoil samples were taken from different localities of Rafsanjan City and analyzed for Zn, Pb, Cu and Cr using the atomic absorption spectrophotometric method. Pollution index (PI) was calculated for each trace element to identify the rate of trace element accumulation with respect to the background values. Land-use map and geochemical maps were also created for evaluating of spatial distribution of pollution index and trace elements concentration in the studied area. Overlapping the concentrations map and land-use map revealed that the highest values of pollution index and trace elements concentration were located in central part of the city and highways with a great vehicle traffic load and also in the vicinity of industrial factories that increased potential health hazards to the local community. On the other hand, lowest values of trace elements were located in green-lands with strict vehicle traffic laws. These results indicated that different land-use and human activities have affected quality of urban topsoil of Rafsanjan resulting in great apprehensions regarding public health in crowded parts of the city
    corecore