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I. SPINTRONIC DEVICES: APPLICATIONS AND 

CHALLENGES 

1.1 Motivations 

1.1.1 Boolean Logic Applications 

Over the past half-century, the computational throughput and the memory storage of 

integrated electronic circuits have improved exponentially mainly through the downscaling 

of the geometrical dimensions of field-effect transistors (FETs) [1]. Sustaining this trend 

is becoming more and more challenging as CMOS devices approach their scaling limits 

[2], [3]. To address this challenge, researchers have investigated various materials 

including high-k dielectrics such as hafnium silicate (HfO4Si), hafnium dioxide (HfO2), 

zirconium silicate (ZrO4Si), and zirconium dioxide (ZrO2) [4]–[17] and developed various 

FET technologies such as Fin field-effect transistor (FinFET) [18]–[20], (Figure 1). 

Moreover, researchers are investigating beyond-CMOS devices that use state variables 

other than the electric charge of electrons such as the spin of electrons, pseudo-spins, and 

excitons [1], [3], [21]–[23], (Figure 2). By employing electronic spin as the binary logic, 

spintronic devices gained special attention thanks to their potential advantages in terms of 

non-volatility and low operating voltage [24]–[26]. Several spin-based logic devices are 

proposed including the all spin logic (ASL) device [27], the composite-input 

magnetoelectric-based logic technology (COMET) [28], the domain wall magnetic logic 

(mLogic) [29], the magnetoelectric spin-orbit device [30], and the magnetoelectric 

magnetic tunnel junction (MEMTJ) [31]. Moreover, the energy efficiency, computational 
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speed, and chip area of these logic devices are studied [32]–[39]. Spintronic logic devices 

excel in implementation of logic functionalities using fewer devices because of their 

efficient implementation of majority gates. However, these devices compared to their 

CMOS counterparts, are slower and less energy efficient, due to the inefficiencies in 

magnetization switching and spin current generation and detection. Thus, more research 

must be done in developing novel spintronics devices to enhance the energy efficiency and 

the operational speed to realize efficient, novel devices that take advantage of non-volatility 

and offer new and enhanced applications. 

 

Figure 1: To improve the performance of FET transistors, various technologies are 

investigated over the past five decades. 
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Figure 2: Electronic spins, pseudo-spins in graphene, and excitons are some of the 

novel state variables studied for beyond-CMOS logic devices [40], [41]. 

 

 

 

Figure 3: Several spintronic devices are proposed, such as the all spin logic (ASL) 

device [27], the composite-input magnetoelectric-based logic technology (COMET) 
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[28], the domain wall magnetic logic (mLogic) [29], and the magnetoelectric spin-orbit 

device [30]. 

 

1.1.2 CMOS-Spintronic Transducers, Spintronic Interconnects, and Memory 

Applications 

Like CMOS logic devices, CMOS-based dynamic random access memories 

(DRAMs) face similar limitations in maintaining a significant growth rate [42]. These 

devices experience an increase in power consumption by scaling down their size because 

of the increase in charge leakage. To lower energy consumption, non-volatile memories 

that would not consume static power are studied. By offering non-volatile data storage, 

magnetic random-access memories (MRAMs) are widely studied to replace the purely 

semiconductor-based memory technologies. Moreover, spin transfer torque MRAMs [43]–

[46] (STT-MRAMs) are used in embedded memories. Thus, enhancing the performance of 

hybrid systems of CMOS devices and magnetic memories requires energy-efficient and 

fast CMOS-spintronic interface circuits that can write binary CMOS data into magnets and 

read the binary data, stored as the magnetization orientation. Moreover, energy-efficient 

interface circuits are required to improve the performance of hybrid CMOS-spintronic 

logic circuits as well. Furthermore, interface circuits might improve the performance of 

large spintronic logic circuits by providing a more energy-efficient long-range interconnect 

scheme that works based on the conversion of spin signals into electrical signals, 

transferring signals in electrical interconnects, and converting signals back into spin 

signals. The interconnects will benefit from the conservation of electrical charge, unlike 

spintronic interconnect [47], [48], which will suffer from losing data due to spin relaxation 
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mechanism. Researchers have examined CMOS-spintronic interface circuits and proposed 

some read and write circuits for STT-MRAMs as wells as sense amplifiers to read 

MRAMs, but these circuits are mostly suitable when a large, complicated circuit reads 

many magnetic tunnel junctions (MTJs). Thus, more studies must be done in the cases of 

signal transductions that using sense amplifiers causes prohibitive energy and area 

overhead. 

1.1.3 Non-Boolean Logic Applications 

In addition to Boolean logic, memory, and interconnection applications [49]–[52], 

spintronic device are studied for applications such as non-Boolean computing, machine 

learning circuits, image recognition [53], [54], and cellular neural network (CNN) [55] and 

shown lower energy consumption and simpler implementations compared to their CMOS 

counterparts. Furthermore, because of non-volatile memory, spintronic devices do not 

require additional memory circuits to store patterns in pattern recognition systems or 

synaptic weights for communicating neurons. Various spintronic neuron implementations 

are proposed that use tunnel magnetoresistance (TMR) in MTJs coupled with other 

spintronic phenomenon such as domain-wall (DW) motion, STT, and spin-Hall effect 

(SHE). However, advances in magnetic materials and spintronic device proposals lead to 

improved applications and operations for spintronic devices in non-Boolean logic 

computations, which must be studied by researchers. In the next section, physical 

phenomena and formalisms governing the operation of spintronic devices is investigated. 

1.2 The Operation of Spintronic Devices 

1.2.1 Spin Current: Generation and Transport 
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As discussed in the previous sections, spintronic devices rely on the spin of 

electrons to represent binary information. In these devices, the current due to spin-polarized 

electrons is used to transfer information among magnets that store the binary information. 

Spin generation in magnetic metals is due to the different mobilities and the density of 

states at the Fermi level for spin-up and spin-down electrons. The degree of spin 

polarization (DSP) varies among magnetic materials. The polarization, 𝑃, can be defined 

as 

 𝑃 =
𝑁↑−𝑁↓

𝑁↑+𝑁↓
,  (1) 

in which 𝑁↑(↓) is the density of states (DOS) of electrons at the Fermi level [56],  

 𝑁𝑖 =
1

(2𝜋)3
Σ𝛼∫ 𝛿(𝐸𝒌𝛼𝑖)𝑑

3𝑘 =
1

(2𝜋)3
Σ𝛼 ∫

𝑑𝑆𝐹

𝝂𝒌𝛼𝑖
 ,  (2) 

in which 𝐸𝒌𝛼𝑖 is the energy of an electron with spin 𝑖(↑ or ↓) and wave vector 𝒌 in the 

band 𝛼 [56]. The current of spin-polarized electrons can be injected into non-magnetic 

metals as well. Spin current in paramagnetic-magnetic interfaces can be measured using 

schemes employing Johnson-Silsbee [57] experiment. In nonmagnetic metals, spin 

accumulation decays exponentially with the characteristic length, called the spin relaxation 

length 𝜆𝑠𝑓. The generation of spin-polarized current is not limited to magnetic materials. 

Because of spin-orbit interaction, scattering of unpolarized electrons by an unpolarized 

target yields in a spatial separation of spin-up and spin-down electrons [58]. Thus, a net 

spin current is generated due to spin Hall effect (SHE). Spin-orbit interactions are strong 

in heavy metallic elements, topological insulators, and 2D materials such as graphene.  
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Figure 4: Illustration of spin-dependent Hall effects used in spin current generation 

and detection. In the SHE, an unpolarized charge current generates a transverse spin 

current, while in the ISHE, a spin current generates a transverse charge current. In 

the anomalous Hall effect (AHE), a charge current generates a transverse charge 

current [58].  

   

Various spintronic devices use spin current to transfer signals in Al, Cu 

interconnects. Like charge current transport in CMOS devices, spin current transport is 

impacted by scattering and dimensional scaling in nanowires. In large CMOS circuits such 

as microprocessors, even more than half of the dynamic power dissipation might happen 

in interconnects [59]. Thus, studying spin current transport in metallic interconnects is 

expected to be crucially important. To provide effective design tools and insights for 
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electronics engineers, circuit and SPICE models must be developed that precisely account 

for the spin current transport in metallic nanowires. 

1.2.2 Magnetization Switching 

1.2.2.1 Spin-Transfer Torque and Spin-Orbit Torque Switching 

In spintronic devices, magnets are widely used to store binary information. Magnets 

possess an easy axis, in which the energy of a magnet is minimized when the magnet orients 

along this axis, (Figure 5). Thus, free magnetic layers reorient themselves along the either 

of the two opposing directions along the easy axis to minimize their energy. These two 

directions are the stable states of the magnet and can represent the binary logics 0 and 1. 

To switch magnets from one stable direction to another, spin torque must be applied. STT-

MRAMs use STT for magnetization reversal. The STT generated in a spin valve is 

explained in Figure 6. Electrons pass through Ferromagnet 1, in which the spin of electrons 

precesses in the exchange field of the magnet and aligns with the orientation of the magnet. 

The spin-polarized current will be injected to a non-magnetic spacer layer. Considering the 

relatively narrow width of the spacer layer, the spin of electrons does not change in this 

region. By passing electrons through Ferromagnet 2, the spin of electrons tend to align with 

the orientation of the magnet. Thus, a spin transfer torque is applied to the magnet due to 

the conservation of angular momentum. Therefore, the spin torque can be explained as the 

net flux of non-equilibrium spin current passing through the magnet. If the STT is strong 

enough, it can fully switch a magnet by 180𝑜.  
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Figure 5: Binary information is stored as the magnetization orientation along the two 

stable directions along the easy axis of the magnet. 

 

 

Figure 6: Spin-transfer torque explained in a spin valve [60].  

 

As explained in Subsection 1.2.1, spin current is generated in non-magnetic 

materials due to spin-orbit interactions. Like the spin current generated due to the 

interaction of electrons with the exchange field in a magnetic material, the spin current 

generated due to the spin orbit interaction applies torque to a magnetic layer, described as 
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the spin-orbit torque (SOT). Recently, researchers are widely studying the applications of 

SOT in the design of SOT-MRAMs [61]–[63] because a large write current does not have 

to pass through a tunnel junction; hence, the tunneling layer can last longer. Moreover, read 

and write lines can be separated and the spin transfer can be applied more efficiently. Thus, 

the area of STT and SOT are active fields of research and promising for novel spintronic 

logic and memory applications. 

1.2.2.2 Strain-Mediated Magnetization Switching 

Magnetostrictive switching is an energy efficient and experimentally demonstrated 

magnetization reorientation mechanism [64]. In this mechanism, by changing the 

magnetoelastic energy, the easy axis of the magnet rotates; thus, the magnetization 

orientation rotates accordingly. Figure 7a shows an experimental setup for a 

magnetostrictive switching. In this experiment, a hybrid structure of magnetic and 

piezoelectric layers is fabricated. By applying a voltage along the thickness of the 

piezoelectric layer, an anisotropic strain is generated along the y axis, which transfers to 

the Ni layer on top. The strain changes the energy profile of the magnetic layer, as Ni is a 

material with strong magnetostrictive properties. By increasing the strain, the energy 

profile is changed such that the y axis becomes the easy axis of the magnet. Thus, the 

magnet reorients by 90𝑜 to align itself with the easy axis. Furthermore, researchers have 

combined this mechanism with STT to fully switch a magnet. In such scenario, first, the 

magnetization reorients by 90𝑜 using magnetostrictive switching. Second, the applied 

voltage to the piezoelectric is turned off; thus, the easy axis will rotate back to the x 

direction. Therefore, the magnet will be placed at the saddle-point of its energy profile and 

will be equally probable to rotate to either of the two stable directions, the +x and the -x 
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directions. Hence, by applying an STT, the magnet can be deterministically switch to one 

of the stable directions. Switching a magnet from the saddle-point of energy profile 

compared to 180𝑜 switching of a magnet using STT, is not only shown to be more robust 

to thermal noise, but also two orders of magnitude more energy efficient [65]. Considering 

the efficiency and the robustness to thermal noise, modeling the magnetostrictive switching 

and designing novel spintronic devices that utilize magnetostrictive switching is a 

promising area of research.  

 

Figure 7: (a) 𝟗𝟎𝒐 magnetostrictive switching is experimentally demonstrated [64]. (b) 

Compared to 𝟏𝟖𝟎𝒐 magnetization reversal via applying STT, 𝟗𝟎𝒐 switching of a 

magnet via STT from the saddle-point of energy profile is demonstrated to be two 

orders of magnitude more delay and energy efficient [65]. 

 

1.3 Thesis Overview 

The objective of this research is modeling the physical formalisms of common 

materials and phenomenon in spintronic and magnetic devices and circuits and designing 

novel spintronic devices for various applications such as interconnection, Boolean logic 

computation, non-Boolean computation, image/pattern recognition, neural networks, and 
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interface circuits for reading and writing magnets. Various novel spintronic devices and 

circuits are proposed in the past decade that employ STT and SOT as well as strain for 

magnetization switching, Al, Cu metallic interconnects for transferring spin current, MTJs 

for storing data, SHE, ISHE, and IREE for converting charge currents to spin currents and 

vice versa. Therefore, there is a growing demand to investigate these physical phenomenon 

and design novel spintronic devices and circuits with enhanced functionalities and 

performance. Thus, the following tasks are undertaken in this research: 

1. Designing circuit models for magnetization dynamics, thermal noise, and metallic 

interconnects widely used in the design of spintronic devices 

2. Analyzing the operation and performance of the all-spin logic device as a building 

block for Boolean logic and coupled-oscillator applications. 

3. Designing spintronic pattern/image recognition circuits with non-volatile memory 

for storing patterns. 

4. Studying and designing read and write CMOS-magnetic interface circuits using 

MTJs and the ASL device as well as their applications in long-range 

interconnection schemes 

5. Investigating strain-mediated magnetization switching and designing novel 

spintronic device and circuits that work based on both magnetostrictive and STT 

switching for logic and neural network applications 

6. Investigating spin-orbit interactions and designing novel spintronic devices that 

work based on both magnetostrictive and SOT switching for logic applications  

A brief description of the above tasks is given below. 
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Task I and Task II: In Chapter II, based on physical formalisms governing common 

magnetic and non-magnetic materials used in spintronic devices, models are developed that 

capture the magnetization dynamics and the impact of thermal noise on the switching of 

magnets as well as spin/current transport in Al, Cu nanowires. Using these models, the 

operation of the ASL device is explained and simulated. Moreover, the impact of size 

effects on the operation the ASL device is studied. Furthermore, the operation of the ASL 

full-adders, as a building block for more complicated Boolean logic gates, is studied. 

Finally, an ASL coupled oscillator is proposed, and its tuning range is studied.  

Task III: In Chapter III, a novel circuit for non-Boolean recognition of binary 

images is proposed. Employing all-spin logic (ASL) devices, logic comparators and non-

Boolean decision blocks for compact and efficient computation are proposed. Furthermore, 

the extension of the work for larger training sets or larger images thorough the 

manipulation of fan in number in different stages of the circuit is studied. Finally, the 

proposed circuit is compared with existing CMOS pattern recognition circuits in terms of 

footprint, power consumption, decision time, and operational voltage.  

Task IV: In Chapter IV, first, an electrical- to spin-signal transducer is proposed. 

The proposed circuit can be used to write binary information into magnetic memories using 

STT.  Then, a simple yet efficient circuit for converting the orientation of a magnet to 

CMOS binary voltage is proposed, which provides an energy-efficient and fast interface 

circuit to read magnetic memories. Using the proposed transducers, a long-range spintronic 

interconnect is proposed that works based on converting spin signals into electrical signals, 

transferring signals in electrical interconnects, and finally converting the signals back into 

spin signals. Moreover, an analytical study of the delay, area-delay-power product (ADPP), 
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and the per-unit length value of energy per bit of spintronic interconnects with ASL 

repeaters is presented. Finally, the performance of the two methods, using spintronic 

repeaters and the electrical transmission of spin signals using the proposed interconnect, 

are benchmarked in terms of delay, energy dissipation, and area-delay-power product.   

Task V: Magnetostrictive switching combined with STT has resulted in faster 

operational speed, higher energy-efficiency, and more robustness to thermal noise in 

magnetization reversal. In Chapter V, the physical formalism of magnetostrictive switching 

is investigated and modelled. Moreover, by combining this switching mechanism with 

STT, a novel spintronic device is proposed, named the magnetostriction-assisted all-spin 

logic (MA-ASL) device. The device is consisted of a heterostructure of magnetostrictive 

and piezoelectric layers. The operation of the device is modeled and simulated using 

developed SPICE models. Moreover, the transferred strain to the structure is simulated to 

ensure the correct functionality of the device. Furthermore, the impact of the pulse skew 

and the rise time on the operation of the device is studied, and design recommendations to 

counter these impacts are provided. Using the developed models and simulations, the 

energy, the error rate, and the delay performance of the device is studied. Moreover, to 

enhance the performance of the device, material analysis is done to investigate the best 

candidate materials to implement the MA-ASL device. The magnetic materials must 

exhibit strong magnetostrictive properties and low resistivity.  

In this task, the applications of the MA-ASL device is further investigated for 

implementation of Boolean logic and neural network circuits. In Chapter V, the 

performance of a 32-bit MA-ASL arithmetic-logic unit (ALU), as a large Boolean logic 

circuit is studied. The proposed ALU is compared to both spintronic and CMOS ALUs. 
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Moreover, in Chapter VI, the applications of the MA-ASL device for the neural network 

circuits is investigated. An MA-ASL neuron is proposed, which consists of an MA-ASL 

majority gate and an MTJ. The performance of the proposed neuron is studied and 

benchmarked against its CMOS and spintronic counterparts in terms of energy dissipation, 

operational speed, and thermal noise. 

Task VI: In Chapter VII, spin-orbit interactions, SHE, and ISHE are investigated. 

Moreover, Rashba effect and inverse Rashba-Edelstein effect (IREE) in 2D materials and 

topological insulators are studied. Furthermore, these mechanisms are modeled using 

circuit models. In addition, by combining SHE, ISHE, IREE, and magnetostrictive 

switching a novel device is proposed, named the magnetostriction-assisted spin orbit 

(MASO) device. Unlike the ASL and the MA-ASL devices, the MASO device uses the 

charge current instead of the spin current to transfer data from the input magnet to the 

output magnet. The operation of the device is modeled and simulated using SPICE models. 

To optimize the performance of the device, the energy dissipation, the switching speed, 

and the robustness to thermal noise are studied. Moreover, materials analysis is performed 

to find the promising magnetic and heavy metallic materials as well as topological 

insulators for the implementation of the device. Using the findings of this analysis, the 

performance of the device in the implementation of the ALUs is studied and benchmarked 

against its spintronic and CMOS counterparts. Findings of this benchmarking helps to 

understand the potential applications of the MASO device in the implementation of large 

Boolean logic circuits. 

The circuit models developed for the magnetization dynamics, tunnel junctions, and 

spin-orbit interactions as well as the novel proposed spintronic devices, neurons, 
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image/pattern recognition circuits, spintronic interconnection schemes, and CMOS-

spintronic interface circuits will serve to guide future research in the field of novel beyond-

CMOS devices, memories, and circuits by examining the potentials and the challenges of 

spintronic and magnetic devices and circuits.  
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II. THE ALL-SPIN LOGIC DEVICE, ITS PERFORMANCE 

ANALYSIS AND ADDER AND COUPLED OSCILLATOR 

IMPLEMENTATION  

2.1  All-Spin Logic Device: Applications and Challenges 

 The ASL device was proposed as a building block for various spintronic devices 

and circuits [27]. Thus, the energy and the delay of the ASL device and ASL-based circuits 

are widely studied [26], [27], [49]–[51], [66]–[76]. The ASL device consists of two 

magnets via a channel in a non-local spin valve structure. Improving the performance of 

the device relies on efficient spin current transport throughout the device, spin current 

injection at the magnetic-non-magnetic interface, and magnetization switching, shown in 

Figure 8. Thus, to optimize the performance of the ASL device, the delay and the energy 

of the device is studied for various geometrical dimensions, supply voltage values, and 

channel materials. To account for the spin current transport in the metallic channel, size 

effects, i.e. surface and grain boundary scattering, and dimensional scaling, e.g. variations 

of the length and the width of the channel, must be studied [75]. Excess scattering at the 

grain boundaries and surfaces of metallic channels is dominated by the Elliott-Yafet (EY) 

mechanism [77]; when electrons scatter to a new state in the conduction band, there is a 

probability that they couple to a different spin state as electron states are not pure spin 

states. Therefore, spin relaxation mechanism becomes proportional to the scattering rate 

[77]. Moreover, the loss of spin information depends on the spin relaxation length of the 

channel. Spin signals decay exponentially for channels longer than the spin relaxation 

length imposing geometrical constraints on the design of ASL devices, such as limiting the 

maximum allowable length of channels to a few hundred nanometers [75].  
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Figure 8: To model the physics of the all-spin logic device, magnetization dynamics, 

spin mixing conductance, and spin-drift diffusion in the channel are taken into 

account [78]. 

 

 Modeling channels with various geometrical dimensions is done using circuit 

models presented in [50], shown in Figure 9. In this model, the spin current transport is 

modeled using a distributed T-model, which accounts for the conductance of the channel 

as well as the spin relaxation mechanism. Moreover, these models capture the dynamics of 

magnetization reversal as well. Furthermore, in [50], a circuit model is developed that 

precisely captures the impact of thermal noise, is validated by analytical derivations 

presented in [52]. Based on the findings, the switching of magnets at room temperature is 

significantly impacted by thermal noise; as an example, the switching delay of magnets 

may alter by 30% at the room temperature.  
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 Because of the efficient implantation of majority gate and lower device count, ASL 

devices are studied for various applications [39], [70], [79]–[81]. As an example, a majority 

gate with a fan-out of four implemented by ASL requires four magnets [82], while that of 

CMOS requires 14 transistors. Similarly, a majority-based full adder implemented by ASL 

requires five magnets [83], while that of CMOS requires 28 transistors. Lower device count 

and fabrication area are two advantages of ASL devices in implementing more complicated 

Boolean logic applications such as 32-bit adders and arithmetic logic units (ALUs) [33]. In 

this chapter, an ASL full adder as the building block for ASL ALUs is analyzed, and its 

performance is studied.  

 

 

Figure 9: ASL circuit model [78]. 

 

 In addition to lower device count, the ASL device offers advantages such as a 

tunable delay in a large range by changing the supply voltage; a change of input voltage 

from 10 mV to 35 mV results in a change of delay from 350 ps to 100 ps. Hence, by 
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implementing ring oscillators using ASL devices [84], we expect the oscillation frequency 

to be tunable in a large range. Oscillators are one of the essential blocks in analog and 

digital electronics and communication systems. CMOS oscillators are widely studied and 

designed, and their phase noise, frequency tuning, and power consumption have improved 

over the last two decades [85]–[90]. However, ring oscillators normally suffer from a poor 

phase noise performance, due to the asymmetric nature of the time domain signal [91], 

compared to more symmetric topologies such as LC and Collpits oscillators. The tuning of 

CMOS ring oscillators usually requires extra tuning components such as varactors, which 

adds to the current path loss. As a result, lower output power and higher phase noise are 

inevitable in a tunable ring oscillator. Therefore, generating wideband, low phase-noise 

oscillation by CMOS ring oscillators is still challenging. To improve the performance of 

oscillators, coupled oscillators are introduced to achieve lower phase noise, wider tuning 

range and higher output power. Moreover, the networks of coupled oscillators can 

implement certain applications such as non-Boolean logic computation circuits [92]. In this 

chapter, an ASL coupled-oscillator scheme is proposed and investigated. 

2.2  Modeling and Benchmarking of All-Spin Logic 

2.2.1 The Operation of All-Spin Logic 

In an ASL device shown in Figure 10, electrical current flows from the supply 

voltage to ground through the input magnet and the nonmagnetic metal underneath it. The 

current passing through a magnet becomes spin polarized with majority electrons’ 

magnetic moment aligned with its magnetization. The spin polarized electrons injected (or 

extracted) by the input magnet increase (or decrease) the density of the electrons with the 

spin orientation aligned with the input magnet inside the channel. The concentration 

gradients for electrons with parallel and anti-parallel spin orientations inside the channel 
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creates a spin current towards the output magnet based on the diffusion process. This spin 

current applies a torque to the output magnet that, if strong enough, can flip it to align it 

with the spin orientation of the majority electrons. Thus, the device is capable of operating 

both as an inverter and as a buffer depending on the polarity of the supply voltage, which 

determines the injection or extraction mechanism for the spin current. 

 

Figure 10: ASL consists of two magnets connected by a non-magnetic channel. 

Injected spin current from Input magnet to the channel diffuses along the channel 

and applies a torque to the output magnet, which if strong enough, switches the output 

magnet. 

 

Major parameters that determine the performance and the energy dissipation of this 

device include channel and interface resistances, spin diffusion length, and the thermal 

noise of magnets. In the next subsections, these parameters are investigated. 
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Figure 11: Transient Response of an all-spin logic device. In this simulation, the input 

magnet is assumed to be oriented in the +𝑿 direction. By applying a negative voltage, 

the device acts as a buffer, while by applying a positive voltage, the device acts as an 

inverter.  

 

2.2.2 The Modelling of the Thermal Noise of Magnets 

The magnetization dynamics of magnets is described by Landau-Lifshitz-Gilbert 

(LLG) equation, 

 𝑑�⃗⃗⃗� 

𝑑𝑡
= −𝛾𝜇0[�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓] + 𝛼 [�⃗⃗� ×

𝑑�⃗⃗⃗� 

𝑑𝑡
] +

𝐼 𝑠,⊥

𝑞𝑁𝑠
, 

(3) 

in which �⃗⃗� , 𝐼 𝑠,⊥, 𝑁𝑠, 𝜇0, 𝛼, 𝛾 represent the magnetic orientation, the perpendicular spin 

current, the number of spins in the magnet, the free space permeability, the Gilbert damping 

coefficient, and the gyromagnetic ratio [50], [93], Figure 12. The net magnetic field, �⃗⃗� 𝑒𝑓𝑓, 

is comprised of the uniaxial anisotropy field, �⃗⃗� 𝑈 = −
1

𝜇0𝑀𝑆

𝜕𝐸

𝜕�⃗⃗⃗� 
, and the demagnetization 

field, �⃗⃗� 𝑑𝑒𝑚𝑎𝑔 = 𝑀𝑆�̅�𝑑�⃗⃗� . The net magnetic field can be modified to include thermal noise. 

Thermal noise is caused by the thermal random motion of electrons in the magnet [33] and 
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can be modeled by the thermal field, �⃗⃗� 𝑇ℎ𝑒𝑟𝑚𝑎𝑙, which models the statistical thermal motion 

of the electrons [50], 

 �⃗⃗� 𝑒𝑓𝑓 = �⃗⃗� 𝑈 + �⃗⃗� 𝑑𝑒𝑚𝑎𝑔 + �⃗⃗� 𝑇ℎ𝑒𝑟𝑚𝑎𝑙. (4) 

The model is implemented in SPICE and the results are validated using the analytical 

solution for the steady-state precession angle, 𝜃0, [50] as a function of temperature 

 
〈𝜃0

2〉 =
𝑘𝑏𝑇

𝐸𝑏
, 

(5) 

in which 𝐸𝑏 represents the energy barrier of the magnet. As Figure 13 shows, the SPICE 

results match within 5% of the analytical results. 

 

Figure 12: LLG equation describes the magnetization dynamics. The corresponding 

vectors to the terms of LLG equation are represented in this figure. 
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Figure 13: To validate the SPICE model of the thermal noise, the derived average 

value of the thermal noise over time of the SPICE model, is compared to that of the 

analytical solution. SPICE results match with analytical results. 

 

2.2.3 Size Effects 

Size effects caused by extra scattering at surface and grain boundaries affect several 

important parameters for ASL channels including resistivity, diffusion coefficient, and spin 

relaxation length. Among these factors, spin relaxation length is the most important factor 

since signal attenuates exponentially as channel becomes longer than spin relaxation 

length, Figure 14. In metals, the dominant spin relaxation mechanism is the Elliott-Yafet 

(EY) mechanism, in which every time an electron is scattered, there is a certain probability 

that it may lose its spin information [17]. Hence, spin relaxation time is proportional to 

momentum relaxation time, which gets shorter as channel cross-sectional dimensions 

become smaller, due to size effects. The models for spin relaxation time and spin diffusion 

length are presented in [94]. Figure 15 shows how spin relaxation length decreases as 

channel dimensions scale. The three important parameters of concern are the sidewall 
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specularity, P, the grain boundary reflectivity, R, and the average grain size. As a rule of 

thumb, the average grain size in channel fabricated by Dual Damascene process is equal to 

the width or thickness, whichever is smaller [95]. 

 

Figure 14: Delay and energy dissipation vs channel (channel) length of an ASL gate. 
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Figure 15: Spin Relaxation versus channel Width [2]. Size effects cause the spin 

relaxation length to decrease with decreasing channel width. For the no size effect 

case, spin relaxation length is independent of channel width. 

 

The delay and energy per bit have been plotted versus length in Figure 16, 

respectively, assuming a channel width of 37.8 nm equal to the width of the magnets, and 

a width to thickness aspect ratio of 2. To observe the impact of size effects, a hypothetical 

case, in which size effects are absent is also considered (labeled ideal Cu). Size effect 

parameters are assumed to be R = 0.2, P = 0.0 for the typical case, and R = 0, P = 1.0 are 

assumed for the ideal case. Physical parameters of Cu channel are calculated as σ = 41.549 

(μΩm)-1, D = 0.014 m/s for the typical case. To demonstrate the effect of thermal noise in 

magnets, each simulation is repeated three times considering room temperature. 
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Figure 16 : (a) Delay versus specularity parameter, P, for an 80 nm long channel. 

Grain boundary scattering parameter, R, is assumed to be 0.2 (b) Delay versus grain 

boundary reflection probability for an 80nm long channel. The specularity 

parameter, P, is assumed to be 0 [96]–[99]. 
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To see how improving channel process can improve channel performance and 

energy dissipation, Figure 17 plots delay versus surface specularity parameter, P, and grain 

boundary scattering, R. Both Cu and Al have been considered here. Also, to avoid busy 

plots, thermal noise has been turned off and its effect has been considered only in setting 

the initial angles of the magnets. Here, both Cu and Al have been considered as they offer 

different tradeoffs. As Figure 15 shows, spin relaxation in Al is higher than that of Cu. 

Furthermore, since the mean free path in Al is shorter than that of Cu, size effects are less 

severe in Al as compared to Cu. However, Cu offers a lower resistivity unless cross-

sectional dimensions become too small such that size effects become too prominent. The 

spin injection coefficients for Co/Cu and Co/Al interfaces are assumed to be the same [73]. 

 

Figure 17: Delay versus channel width for 80 nm and 400 nm long channel. 
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To quantify the impact of dimensional scaling, channel width analysis is presented 

in Figure 17. The magnet width is assumed to be 37.8 nm in all cases to ensure adequate 

magnet stability and non-volatility. Size effects become more pronounced at smaller 

dimensions. The aspect ratio of channel is assumed to be constant in these simulations. For 

the channel widths smaller than the magnet width, the interface area decreases which 

further increases delay and energy. For channel width analysis, two channel lengths of 80 

nm and 400 nm have been considered. For the ideal cases (no size effects), both lengths 

are shorter than spin relaxation lengths in Cu and Al, and Cu is a better choice since it 

offers a lower resistivity. However, size effects make the spin relaxation length shorter and 

Al channels become faster and dissipate less energy compared to Cu channels especially 

at small widths. Also, one can see the delay and energy penalty associated with size effects 

increase drastically as wire dimensions scale down. 

2.3 Applications 

2.3.1    ASL Adders 

 Majority gates can be used to implement full adders with lower device count, as 

shown in Figure 18. An ASL full-adder implementation by cascading two ASL majority-

not gates is shown in Figure 19a, and the layout is shown in Figure 19b. The carry-out bit, 

𝐶𝑂𝑈𝑇
̅̅ ̅̅ ̅̅ , is the majority-not of A, B, and the Carry in (CIN) bit; hence, 𝑆𝑢𝑚̅̅ ̅̅ ̅̅  bit can be produced 

as the majority-not of A, B, CIN, 𝐶𝑂𝑈𝑇
̅̅ ̅̅ ̅̅ , 𝐶𝑂𝑈𝑇

̅̅ ̅̅ ̅̅  bits, implemented using a 5-input majority 

gate. The proposed structure is simulated, and the results are shown in Figure 19c. By 

cascading the proposed full adder, a 32-bit ASL ripple-carry adder is formed. Although the 

proposed 32-bit ASL adder will benefit from lower device count, the CMOS 32-bit adder 
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will be two orders of magnitude more energy and time efficient, even without considering 

driver circuits for ASL adders [36]. The significant difference in energy efficiency is due 

to the higher energy efficiency of CMOS transistors. Hence, ASL devices cannot compete 

against CMOS devices in terms of delay and energy for implementation of Boolean 

applications. However, due to the efficient control of delay and magnetization waveform, 

ASL devices are studied for other applications; one example of an ASL-coupled oscillator 

is demonstrated in the following subsection, and another example of an ASL image-

recognition circuit is demonstrated in Chapter III. 

 

Figure 18: Implementation of a full adder using two majority-not gates. 
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Figure 19: (a) Schematics and (b) layout of the ASL full adder. (c) The transient 

response of an ASL full-adder. The blue color represents the magnetization 

orientation in the x-direction and the green and red colors are representing 

magnetization in the y and z directions. 

 

2.3.2 ASL Oscillators and Coupled-Oscillators 

Oscillators are one of the essential building blocks in analog and digital electronics 

and communication systems. One of the most commonly used CMOS oscillator topologies 

is the ring oscillator. Compared to its bulky LC counterparts, GHz-range ring oscillators 

are a more practical candidate for integrated circuits as they promise more compact 

implementation and enable the use of digital invertors. An ASL ring oscillator is realized 
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using a ring of three ASL inverters, [84]. The oscillation frequency of the device is highly 

tuneable as it changes from 1.8 GHz to 6.8 GHz by changing the supply voltage from 30 

mV to 70 mV, as shown in Figure 20. However, the device suffers from a poor phase noise 

performance. The figure of merit of the ASL device is limited to 150-160 dBc/Hz, while 

that of CMOS device can reach to 189 dBc/Hz [100]–[102]. The high phase noise of the 

device is inevitable for in a highly tuneable ring oscillator structure like CMOS circuits, as 

discussed before. Therefore, to improve the generation of the wideband low-phase noise 

oscillation of CMOS oscillators, researchers have proposed a myriad of design techniques 

for CMOS and other technologies. One proposed technique is the coupled oscillator, which 

generates lower phase noise and has a wider tuning range and higher output power. In 

addition, networks of coupled oscillators can be used in certain applications such as non-

Boolean logic computation.  

 

Figure 20: Oscillation frequency versus supply voltage. The oscillation frequency 

increases linearly with increasing the supply voltage. 
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Table 1: Performance comparison of the ASL ring oscillator with CMOS oscillators. 

The figure of merit (FMO) of an oscillator is defined as 𝑭𝑴𝑶 =

𝟏𝟎𝒍𝒐𝒈𝟏𝟎[(
𝒇𝟎

𝚫𝒇
)
𝟐

.
𝟏

𝑳{𝚫𝒇}.𝑷𝒅𝒄
]. 

 Unit ASL 

0.18um 

CMOS 

[100] 

0.18um 

CMOS 

[102] 

0.18um 

CMOS 

[101] 

Frequency GHz 6.0 5.6 5.8 4.8 

Tuning 

Range 
% 100 6.4 8.9 4.3 

VDD mV 20 400 600 1500 

DC Power mW 0.25 1.1 0.7 3.0 

FMO dBc/Hz 150 189 174 189 

 

 

Figure 21: (a) Two metallic channels are connecting two ASL ring oscillators to form 

the ASL coupled oscillator. The oscillation of the two rings will be coupled to each 

other if the oscillation frequencies of two oscillation loops are close to each other.  

 

An ASL coupled-oscillators is proposed in this thesis as shown in Figure 21. The 

proposed structure consists of two ASL ring oscillators connected to each other using two 

connector ASL gates, responsible for injection-locking mechanism. The simulation results 
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are shown in Figure 22. The voltage applied to Ring 1 is 35 mV. In Figure 22a, the voltage 

applied to Ring 2 is 10 mV larger than that of Ring 1. Different voltages applied to rings 

results in different oscillation frequencies in rings; however, considering the injection-

locking mechanism and close oscillation frequency values, the oscillations of two rings 

will couple and will oscillate at the same frequency with ~180𝑂 of phase shift. In Figure 

22b, the difference between the voltages applied to the two rings increases to 20 mV; thus, 

the difference between the oscillation frequencies increases; therefore, two rings can no 

longer continue their coupled oscillation. To quantify the range of coupled oscillation, 

simulations are done with different supply voltage values, and the results are shown in 

Figure 23a. Moreover, the phase shift of two rings is controllable by changing the supply 

voltage of the connector ASLs. As shown in Figure 23b, the phase shift is changed from 

~180𝑂 to 130𝑂 by changing one of the connector voltages from 12.5 mV to 20 mV. The 

easy manipulation of phase noise is a desirable feature for implementing a phase-locked 

loop (PLL) system based on the proposed ASL coupled-oscillator. The phase noise and the 

figure of merit of the proposed coupled-oscillator is not investigated yet. However, 

considering the low power dissipation of the device, the structure might be promising for 

the design of image and patterns recognition systems based on coupled-oscillators [92]. 



 35 

 

Figure 22: The voltage applied to the magnets of the ring 1 is 35 mV. In (a), the voltage 

applied to the magnets of the ring 2 is 10 mV higher than the voltage applied to the 

ring 1, while in (b), the voltage applied to the ring 2 is 20 mV higher than the voltage 

applied to the ring 1. 
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Figure 23: (a) The supply voltage applied to the ASL connector 2 is changed from 

12.5 mV to 20 mV. As a result, the phase shift of the two rings is changed from Δϕ1 to 

Δϕ2 in which Δϕ1>Δϕ2. (b) Locking range of the ASL coupled oscillator. The shaded 
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region shows the region where the supply voltages of rings are different, but the two 

rings will show a locked oscillation. 

 

2.4 Conclusions 

Beyond CMOS devices are being studied to potentially augment conventional 

CMOS logic. Spintronic devices are potential candidates as they offer new features such 

as nonvolatility. In this section, the potential performance of ASL is modeled and the 

impact of size effects and dimensional scaling are quantified. It is predicted that ASL 

devices will suffer from size effects even more seriously as compared to their electrical 

counterparts. This is due to the exponential drop in spin signal as spin relaxation length 

degrades due to size effects. Thereby, any improvement in Cu interconnect technology 

such as an increase in average grain size or wire surface quality will have an even bigger 

impact on ASL interconnects. Al wires offer a larger spin relaxation length and less 

pronounced size effects as compared to Cu wires. However, they are more resistive except 

for narrow wires. Thereby, Al ASL interconnects outperform Cu ASL interconnects when 

they are relatively long and narrow. To transfer spin signals in distances longer than 1 𝜇𝑚, 

other spintronic structures must be proposed, in which one novel design is proposed in 

Chapter IV.  

Two examples of the applications of ASL device is demonstrated in this section. 

First, the ASL full-adder, an example of Boolean logic devices, was proposed. The layout 

and the operation of the device were shown. Although implementing a 32-bit adder using 

ASL compared to CMOS, requires fewer device count, it cannot compete against CMOS 

device in terms of energy efficiency, considering the energy efficiency of CMOS 
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transistors. Later, an ASL coupled oscillator was proposed. The device is highly tunable in 

a wide range of frequency and supply voltage. The proposed device is promising for 

coupled-oscillator-based image and pattern recognition systems.   
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III. IMAGE RECOGNITION CIRCUIT USING ALL-SPIN 

LOGIC DEVICES 

3.1 Non-Boolean Applications of All-Spin Logic Device 

 Pattern recognition and in particular, image recognition techniques have been 

widely studied in machine learning and image processing [103]–[105]. Researchers have 

widely studied the hardware demonstration of computation units for pattern recognition, a 

challenging problem in terms of chip size, power consumption, computation complexity, 

and decision speed. Among various solid state technologies, CMOS provides a low cost, 

highly-integrated and low power implementation platform for pattern recognition [92], 

[106], [107] and processing [108] systems. For Boolean logic systems, CMOS gates exhibit 

processing speeds up to a few GHz and can be designed to have a low static power. 

However, the dynamic power consumption of a large system with a GHz clock frequency 

can still limit the scalability. Fan-in and fan-out considerations for CMOS devices also 

impact the speed, power consumption and the size of devices. Besides Boolean systems, 

some novel non-Boolean techniques have been developed to overcome these issues. In 

non-Boolean systems, logic gates will no longer be the key building block and 

analog/mixed signal circuits are used. In [92], authors propose a technique for non-Boolean 

training and detection of image pixels using a network of coupled oscillators. This structure 

has the capability to detect any scaled or rotated version of a desired image. On the other 

hand, this method suffers from high computational complexity and large area and power 

consumption that limits the application for large image arrays. Moreover, the long 

convergence time is another limitation. Other proposed CMOS systems have demonstrated 

artificial neural networks (ANN) by designing circuits emulating neurons and synapses 
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[106], [107]. The larger computation demand in these systems, leaves the search open for 

new solutions. 

 To overcome the limitations of CMOS devices, other technologies are being 

investigated for pattern recognition applications. Spintronic devices have received 

attention recently because of some unique properties, e.g., low voltage operation and non-

volatility. In [69], all-spin logic (ASL) and  charge-spin logic (CSL) devices are shown to 

be capable of Boolean and non-Boolean operations which demonstrate them to be an 

attractive choice to build some fundamental blocks such as ring oscillators. The majority 

gate operation of ASL devices has been previously introduced in some Boolean logic 

systems [27], [109]. This feature of these devices can overcome fan-in and fan-out 

limitations of large integrated systems. Besides, the inverting and non-inverting operation 

modes of ASL devices can be the key to design many logic circuits e.g., full-adder circuits 

as discussed in Section II. The time domain transient behavior of magnetization in these 

devices also provides another degree of freedom to demonstrate non-Boolean operations. 

These features combined, enable us to design an all-spin logic non-Boolean compact 

structure with low power consumption and low computational complexity. 

 In this section we propose a novel pattern recognition circuit that takes advantage 

of novel features of spintronic devices such as non-volatility, efficient implementation of 

majority gates and XOR functions, and the ability to distinguish strong and weak 

majorities. The non-volatility of the devices enables storing large sets of training images 

within the logic with no standby power dissipation. This feature also enables “instant-on” 

operation and saves on energy and delay penalties imposed by loading training images 

from a main memory. 
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Figure 24: An ASL Majority gate with three inputs. The three input magnets, M1, 

M2 and M3 are connected to the output magnet, MO, using three metallic channels. 

 

3.2 All-Spin Logic Majority Gate 

 As mentioned earlier, the ASL device supports a majority operation as shown in 

Figure 24. This feature is achieved because the net spin current to the output magnet is 

determined by the sum of all input spin currents from all input devices. In principle, this 

system can be designed for many inputs. As a trade-off, by increasing the number of input 

devices in a majority gate, the uncorrelated thermal noise of these devices adds up and 

impact the transient magnetization of output magnet. Based on the device properties, this 

phenomenon sets a practical limit on the maximum number of input devices for a majority 

gate. In our simulations, for three and five input cases, the transient output magnetization 

is less impacted by the thermal noise, compared to higher fan-in numbers. We must clarify 

that the orientation of the output magnet depends on the sign of the applied voltage on the 

magnets. In the case of a negative voltage applied on the magnets, the magnetization 

orientation value will be the majority of input magnetizations. On the other hand, if the 
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applied voltage is positive, the steady state value of the output magnet will be the 

complementary majority of input magnetizations. 

 

 

Figure 25: (a) Switching transient response for different scenarios of input 

magnetization in a majority gate with 5 inputs. (b) Switching transition comparison 

of majority gates with three and five inputs. In this comparison, the input 

magnetization of magnets of three input gates are the same. For the gate with five 

inputs, four inputs have similar magnetization and the net spin current is equal to the 

other gate. The applied voltage on magnets in these simulations is −5 mV. 
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Figure 26: Switching delay variation versus the supply voltage. Each voltage is 

simulated three times to verify the results. 

  

 The orientation of the output magnet of an ASL majority gate depends on the 

number of input magnets, because the transferred spin torque increases when there are 

more magnets with magnetization in the same direction. Figure 25 shows different 

scenarios of transient output magnetization in majority gates with three and five inputs. As 

shown in Figure 25a, in a majority gate, with 5 inputs, the switching of output 

magnetization becomes faster when there are more inputs with a similar magnetization 

direction. As the number of magnets with a similar magnetization decreases, the switching 

happens slower and the thermal noise adds up. In Figure 25b, the switching transition for 

two majority gates with three inputs and five inputs are compared. The gate with three 

inputs compared to the gate with five inputs, is affected less by thermal noise. Based on 

(24), the equation for the switching time of a magnet, if the value of injected spin current 

increases, the switching delay decreases. However, as shown in [110], the channel in this 

device can be approximated as an RC network; hence, the injected spin current and the 
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supply voltage are directly correlated. Therefore, the switching delay is inversely 

proportional to the value of supply voltage. This result is shown in Figure 26.  

3.3 Pattern Recognition Scheme 

 Like any recognition system, in this work we consider two major phases for the 

operation. The first phase is the learning phase, where the desired pattern is stored in the 

memory. In the detection phase, the circuit identifies the similarity of an input data and the 

stored pattern with respect to the decision-making criteria. In the learning phase, the circuit 

can receive a single image or a training set. The training set includes multiple training 

images from different users. In this section, we propose a new technique using all-spin 

logic devices and establish a fully spin-based operation. By illustrating several examples, 

we verify the performance for various image sizes. 

3.3.1 Mainly Similar Images 

 We first provide the mathematical definition of mainly similarity and then illustrate 

how this can help the training of the circuit. In our simulations, all the images are binary-

valued matrices with 0 and 1 representing white and black pixels, respectively. In this 

circuit, we assume that binary “0” logic corresponds to the magnetization orientation in 

−𝑿  direction and binary “1” logic corresponds to magnetization orientation in +𝑿 

direction. 

 For a given pair of binary vectors 𝑥 and 𝑦 with equal length 𝐿, the Hamming 

distance is defined as  

 𝑑(𝑥, 𝑦) = Σi=1
𝐿 (1 − 𝛿𝑥𝑖𝑦𝑖

),  (6) 
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Where 𝑥𝑖 and 𝑦𝑖 denote the 𝑖𝑡ℎ components of x and y respectively and 𝛿 is the kronecker 

delta function. Subsequently, we can exploit this quantity as a measure of similarity 

between two images. 

 Definition 1 Two binary images B and 𝐵′ ⊂  {0,1}𝑚×𝑛 are called mainly similar 

if the majority of pixels across every two rows are identical. More specifically, 

 ∀ k ∈  {1,⋯ ,m}: d(Bk,:, Bk,:′) < ⌊
n

2
 ⌋,  (7) 

where Bk,: denotes the 𝑘𝑡ℎ  row of B and ⌊𝑎⌋ represents the floor operation on a (i.e., the 

largest integer not greater than a) [76]. 

 

Figure 27: The two images are mainly similar (along the rows), however, the 

Hamming distance between the third columns is 3 which does not imply a similarity 

along the columns 

 

 By this comparison, we ensure that the two images have almost similar pixels along 

the corresponding rows. In this work, we consider the comparison along the rows, although 

a column-wise comparison can be established with no loss of generality. As illustrated in 
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Figure 27, being mainly similar along the rows, does not imply being similar along the 

columns.  

3.3.2 Majority Training and Decision Making 

 In the learning phase, we train the circuit by providing a number of mainly similar 

images. These images could be different representations of a target image (say a character 

or a certain binary pattern). We build up a representative of the given similar images by 

constructing a so-called mean image. 

 Definition 2 For a set of P binary images 𝐵1, 𝐵2, 𝐵3,⋯ , 𝐵𝑃 ⊂ {0,1}𝑚×𝑛, the 

corresponding mean image denoted as �̅� is a binary image with entries [76] 

 �̅�(𝑖, 𝑗) = 𝑛𝑖𝑛𝑡 (
1

𝑃
 𝛴𝑘=1

𝑃 𝐵𝐾(𝑖, 𝑗)).  (8) 

In this equation, nint denotes the nearest integer function. In our circuit, the mean image 

represents the desired pattern by the users and is utilized as a reference. Since this matrix 

is constructed using all-spin majority gates, the number of training images, P, is considered 

to be odd and upper bounded by the maximum number of inputs to a majority gate as 

discussed in the previous subsection. 

 After the training data is stored and the mean image is constructed, we make a row-

wise comparison between the input and the mean image. As we will see in the next section, 

depending on the initial value of output magnetization, the non-Boolean row decision 

maker can return the total count of matches or mismatches between the compared rows of 

input image and the mean image. 

3.4 Proposed Structure and Design Considerations 
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 Based on the pattern recognition scheme shown in the previous section, we study 

two different implementations of the circuit. By comparing the performances of the two 

different versions of the single pixel comparator unit, we choose the one with more 

capabilities, at the expense of slightly more power consumption and occupied area. In the 

single pixel comparator, the circuit receives the training pixels from P different users and 

the mean image is constructed. The value of the mean pixel is then compared with the 

corresponding value in the input image and the steady state magnetization of Pixel magnet 

stores this information.  The two versions of this unit both operate based on the idea of 

training the circuit with a set of mainly similar images and comparison of the single pixels 

from the input image with their correspondence in the mean image. With respect to the 

required operations, the single pixel comparator, requires a memory to store the training 

data, a logic comparator and a circuit to construct the mean pixel. As previously mentioned, 

the mean pixel can be constructed by an all-spin majority gate; however, for the memory 

and the comparator, we will propose a new circuit in the following subsection. 

3.4.1 Memory+Logic Comparator 

 1-bit full adder structures with a total number of five nanomagnets have been 

discussed in Section II. By proper setting of the adder circuit, we use it as an area and 

power efficient comparator (XNOR) block as shown in Figure 28. Two inputs to this block 

(A and B) are coming from distinct sources. One of the inputs comes from the input image 

synchronized with the control voltage and the other input is given to the circuit during the 

learning phase. Compared to a CMOS counterpart, this structure exhibits very important 

advantages. First, it requires five magnets whereas the CMOS version requires at least eight 

transistors for XNOR implementation. Second, this circuit has the capability of storing the 

training information without extra static power consumption, whereas in CMOS, excess 

power is consumed to store this data [111]. Taking advantage of the non-volatile storage 

in ASL devices, the input magnets of this circuit can store the binary data and later the  
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Figure 28: 1-bit full adder used as XNOR. In the 2D implementation of this work, X 

and Y wires are in-plane metal wires and connections along the Z axis are vias. 

 

stored information is used to determine the magnetization direction of the next stages. 

Figure 29 shows the simulated output waveform (𝑠𝑢𝑚̅̅ ̅̅ ̅̅  magnet) of the XNOR block for 

different scenarios of input magnetization. As it is important to consider the breakdown 

current effects [71], we choose the 5mV supply voltage in our simulations. This is to ensure 

that the current density is safely below the breakdown value. It is noteworthy that for 

channels with higher breakdown current densities, higher voltages can be applied and the 

operation speed increases. The control voltage is applied on the magnets at t=0. The total 

power consumption of the XNOR gate is 11 𝜇𝑊 and the estimated area is less than 0.3 

𝜇𝑚2. As we apply a control voltage on the XNOR gate, the output magnetization remains 

in the −𝑿 orientation (initial condition of magnetization in this simulation) if the pixel 
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values are different. In case of having similar inputs to this gate, the output magnetization 

switches to +𝑿 direction as shown in Figure 29. We must clarify that the initial condition 

of the output magnet does not change the final magnetization orientation. 

 

Figure 29: Simulated output waveforms of XNOR gate 

 

3.4.2 Construction of the mean pixel 

 As a reliable and simple way to extract the information from the training set, we 

construct the mean image as discussed in the previous subsection. The ASL majority gate 

with the schematic shown in Figure 24, provides a low power and efficient implementation 

of the mean image. The inputs to this majority gate, come from 𝑃 different users. In 

addition, the images that system receives during the learning phase are constrained to be 

mainly similar along the rows. By applying the control voltage on the magnets of this gate, 

the output magnetization either switches to other value or remains in the same orientation. 

If the applied control voltage is negative, the output final magnetization orientation is the 

majority of the input magnetizations. In the case of positive control voltage, the output 
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magnetization settles to the complementary majority value of the input magnetizations. For 

this system, since we apply unified positive voltages, the majority gates settle to the 

complementary majority value. To extract more information from the majority gates 

operation in this circuit, we assume a unified value of initial magnetization orientation on 

the output magnets of each stage of majority gates. This enables us to recognize the total 

count of matches or mismatches between the input magnetizations to each majority gate, 

as we will discuss later. The total power consumption of each majority gate in this circuit 

is 3.75 𝜇𝑊 and the corresponding estimated area is less than 0.2 𝜇𝑚2. 

3.4.3 Single Pixel Comparator 

 By having the required blocks, we propose two different versions of the single pixel 

comparator.  

3.4.3.1 Standard implementation 

 The schematics of this implementation and the table with the detailed operation are 

shown in Figure 30. This circuit operates in the same order discussed before. The first stage 

of the circuit is a majority gate with inputs coming from the P users in the learning phase. 

The output of this majority gate settles to the corresponding mean pixel value. The output 

of this gate is connected to a comparator circuit which has the other input coming from the 

input image. The connection is through a short metallic channel to minimize the delay. 

When the learning phase is finished, and the detection phase starts, by applying the control 

voltage across the magnets of the comparator circuit, the “Pixel” magnet settles to the 

comparison value of the mean pixel and the input pixel. It is noteworthy that the input pixel 

can be applied on Magnet 𝑄𝑖𝑗 after the �̅�𝑖𝑗 magnetization settles to the mean pixel; hence, 

no extra memory circuit is required to store the value of �̅�𝑖𝑗.  
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Figure 30: (a) Standard single pixel detector schematic. (b) The truth table with the 

detailed operation of the circuit. 

 

3.4.3.2 Comparator-First implementation 

 In this version, there are the same number of comparator circuits as the total number 

of training images at the input side. The comparators have the input image pixel, 𝑄𝑖𝑗, in 

common and differ in their other input that comes from their corresponding training image. 

The output magnets of the comparators are connected to the “Pixel” magnet through 
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metallic channels in a majority gate configuration. During the learning phase, the pattern 

pixels are stored in the corresponding input magnets. By applying the control voltage on 

the magnets of the circuit, the detection phase starts and the “Pixel” magnetization settles 

to the comparison value of the mean pixel and the input pixel. The schematic of the circuit 

and the detailed operation table are shown in Figure 31. 
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Figure 31: (a) Comparator-first pixel detector schematic. (b) The truth table with the 

detailed operation of the circuit. 
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 As it can be verified by comparing the last columns of Figure 30b and Figure 31b, 

the “Pixel” steady state value is identical in the two versions. To verify the identical output 

result from the two different versions of the implementation in a more general case, we 

must prove that the majority operation and the comparison (XOR/XNOR) operation are 

interchangeable, i.e., 

 Proposition 1 Given 𝑥,  𝑦1, 𝑦2, ⋯ , 𝑦𝑃  as binary variables and P as an odd integer 

number, 

 x ⊕  nint(
1

𝑃
Σk

Pyk) =  nint(
1

𝑃
Σk

P(x ⊕ yk)),  (9) 

where ⊕ denotes the XOR operation [76]. The mathematical proof of this proposition is 

shown in [76]. 

 Although the standard implementation has the advantage of slightly lower power 

consumption (lower device count) and a smaller area, we select the comparator-first design 

as the unit cell of this circuit because the output magnetization transient of this circuit 

provides more information on the similarity of the training pixels and the input pixel. Based 

on Figure 30b and Figure 31b, the final value of output magnetizations, in two cases are 

identical. However, the Comparator-first output magnetizations comes from a majority 

gate and switches when most pattern pixels have the same value of the input pixel.  If the 

majority gate at the output of Comparator-first circuit has a low fan-in (e.g.,≤ 5), the 

switching transient behavior will be less sensitive to the accumulated thermal noise and the 

information on the number of training pixels with identical values will be provided. On the 

other hand, in the standard implementation, the output magnetization is from the XNOR 

circuit and conveys no information on the number of similar pattern pixels. Based on Figure 

30b, the output magnetization transient will not add information on the number of training 
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pixels with identical values. This is particularly important when the user in the detection 

phase tracks the total count of pattern pixels with the similar value. 

3.4.4 Non-Boolean Row Decision-Maker 

 The last stage of the proposed circuit uses the interesting feature of the ASL 

majority gate as a means to quickly decide about the mainly similarity of the input image 

and the mean image, along the rows. The inputs to this majority gate is from the “Pixel” 

magnets of the pixels along the same row of the image. The connection is through short 

channels to minimize the delay.  As mentioned before, the spin torque transferred from the 

input magnet to the output magnet in the ASL majority gate is determined by the 

magnetization of the input devices. As the number of devices with similar magnetization 

orientations increases, the transferred spin torque increases; hence, the output 

magnetization switching becomes faster according to (6). By proper selection of the control 

voltage timing and the dimensions of magnets and channels in this gate, a reliable decision-

making based on the transient behavior of output magnetization is achieved. This final 

majority gate is sensitive to the uncorrelated thermal noise of input magnets; hence, an 

intentional low fan-in number (≤ 5) must be selected. In our simulations, three magnets 

from the previous pixel stages are connected to this gate and as it will be shown in 

simulation results, a reliable decision-making is achieved. 

 The complete circuit for the full image comparison consists of two stages. The unit 

pixel comparator and the row majority gate. The structure consisting of the comparator-

first circuits and the Row majority gates is called the “Smart Detector Cell”. This naming 

convention, helps the discussion of operation in the next subsection. We call these detector 

cells smart because they can perform multiple tasks of “storage”, “Boolean Computation”, 

and “non-Boolean decision-making” in a time-efficient manner. The schematic of this 
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circuit is shown in Figure 32. The total power consumption of this circuit is 115 𝜇𝑊 and 

the occupied area is less than 0.5 𝜇𝑚2. 

 To feed the input data, spin polarized currents are used to initialize the 

magnetization of input magnets based on the training images, similar to [112]. On the other 

hand, the number of write units is equal to the number of pixels, while there is one output, 

which translates into a small overhead. The decision data is in the form of time delay and 

can be stored on a capacitor, where the delay impacts the amount of the stored charge. The 

other possibility to extract he output data will be using MTJ devices, as mentioned in [113]. 
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Figure 32: Structure of the unit smart detector cell. 

3.5 Simulation Results 

 In this subsection, we provide two examples to show the reliable performance of 

smart detector cells. 

3.5.1 Non-Boolean Hamming Distance Identifier of 3 × 3 Pixel Pattern and Input Image 
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 In this example, we only have one training image and one input image. To compare 

the similarity of these two images, we need nine XNOR gates to identify the similarity of 

corresponding pixels in the two images and three majority gates with Fan-in of three to 

decide on the similarity of the corresponding rows. The smart detector cell in Figure 32, 

has three comparator-first circuits and a Row majority gate. The mainly similarity of the 

rows can be determined by the Pixel majority gates. The last majority gate in this case, 

settles to +𝑿 magnetization if at least two rows are mainly similar. The initial 

magnetizations of the comparators and the majority gate outputs are set to 1. Figure 33 

shows two images as well as the transient magnetization for various magnets. The Pixel 

waveforms overlap in some cases; thus, only three pixels are shown in this figure. As 

expected, the comparator outputs switch for 𝑃21 and 𝑃22 pixels since the values in the input 

image and the pattern image are different. For the rest of pixels, the comparator output is 

+𝑿 magnetization and will not switch. Subsequently, Row 1 and Row 3 both exhibit 

perfect similarity and the output of the corresponding majority gates switch within the 

shortest time. On the other hand, Row 2 exhibits a mismatch and therefore cannot switch 

to −𝑿 magnetization orientation. The control voltage of 5 mV is applied on all the magnets 

at t=0 and the circuit compares the two images in less than 0.6 ns. Compared to CMOS 

circuits, this exhibits significantly lower operational voltage and decision time. 
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Figure 33: Using a single smart detector cell, we can compare these 𝟑 × 𝟑 pixel 

images. The waveforms of the comparators and majority gates (bottom). 

3.5.2 Non-Boolean Similarity Comparison of a 9 × 9 Pixel Image and a Set of Three 

Pattern Images 

 To incorporate the smart detector cells for larger images, we need an accurate 

design of cells. Here, we develop a circuit for training with 9 × 9 pixel images and perform 

a non-Boolean comparison between the constructed mean image and the 9 × 9 pixel input 
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image. In this simulation, three different users write the word “Spin” by their own choice 

of pixels. The three pattern images are shown in Figure 34. 

 

Figure 34: Training set for the 𝟗 × 𝟗 pixel images. 

 In the detection phase, a new user of the circuit, chooses an arbitrary image of 

interest as the input. As an example, in this simulation, the user chooses the word “swim” 

as shown in Figure 35 (left). The circuit should compare this image and the mean image 

constructed from the training set. 
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Figure 35: The input image (left) and the representation of the mean image (right). 

The mean image is not a direct output of the circuit. 

 The mean image of the training set is also shown in Figure 35 (right). One 

advantage of constructing the mean image is discussed here. As it can be seen in Figure 

35, those pixels which are mistakenly valued by a single user (e.g., 𝑃26 and 𝑃49) in the 

learning phase, are automatically corrected when the mean image is constructed. This is 

specifically useful, when users train the system with multiple versions of an image during 

the learning phase to make sure that the mean image represents their desired pattern. The 

mistaken values could be due to any source of error or distortion. In an ideal case where 

the thermal noise effect can be ignored, by changing the fan-in of different stages in the 

smart detector cell, the circuit can compare these two large images. However, in our 

simulations, as we model the thermal noise accurately, fan-in considerations become 

prominent. Based on these considerations, we break these 9 × 9 images into smaller 3 × 3 

sub-images, where a single smart detector cell unit can be used for the comparison. The 

nine smart detector cells can operate in parallel and the circuit configuration can be 

determined by the user. By this breakdown, we can also achieve more information on the 

pixels as we can check the mainly similarity for smaller blocks of the original image. The 

breakdowns of the mean image (squares on the right) and the input image (squares on the 

left) are shown in 3 × 3 partitions in Figure 36. 
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Figure 36: Due to fan-in considerations, the circuit is consisted of 9 smart detector 

cells. The corresponding breakdowns of the mean image and the input image are 

shown here. 

 To distinguish the different rows of smaller blocks, we use the notation of 𝐶𝑖𝑗 

clusters, which represents the elements of the 𝑖𝑡ℎ row from Column 3𝑗 − 2 to Column 3𝑗. 

The magnetization waveforms shown in Figure 37 and Figure 38 separately show the 

output magnetizations of smart detector cells for various clusters. The unified initial 

condition of the output magnet in this simulation is −𝑿 orientation. In Figure 37, the 

switching delay of output magnetizations for the clusters with perfect match (𝐶11, 𝐶22,

and 𝐶41) and those with one mismatch (𝐶52, 𝐶42, and 𝐶32) can be easily distinguished. This 

phenomenon was previously described as the unique feature of ASL majority gates and 

helps the users to identify the number of mismatches along different rows. At the same 

time, the output magnetization of the clusters with the same level of similarity, are very 

close in time domain which makes this non-Boolean decision-making a reliable metric. 
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Figure 37: The switching delay of output magnetization in last stage represents the 

similarity of input data and pattern data. 

 On the other hand, in Figure 38, the output magnetization cannot switch for clusters 

with mismatches (𝐶43 and 𝐶72), the level of precession for different mismatch levels is not 

the same, because of the difference in the spin torques provided in these two cases. If the 

user has a very high-resolution study on the output magnetization, this can help to identify 

the number of mismatches; however, the switching transient is a more reliable metric and 

the same information can be extracted by repeating the simulation with the output magnet 

initial condition set to −𝑿 magnetization. 
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Figure 38: For the cases of mismatch in clusters, magnets will not switch and the 

initial magnetization does not change. The y-axis shows a range from -1.002 to -0.998 

in contrast with Figure 37 in which the range is from -1 to 1. 

 As it can be seen in all the simulation results, this circuit decides in 1 ns for a 9 × 9 

pixel image, whereas in CMOS, this decision time, cannot be less than few nanoseconds. 

For a detailed comparison between the two technologies, the performance of this circuit 

and two existing CMOS circuits are compared and shown in Table 2. 

Table 2: Performance Comparison with Existing CMOS Systems 

Reference [108] [112] This Work 

Decision Time 30 ns N.A. 1 ns 

Image Size 32 × 32 86 neurons 9 × 9 

DC Power N.A. 2.2 𝑚𝑊 990 𝑢𝑊 

Area N.A. 0.018 𝑚𝑚2 < 1 𝜇𝑚2 

Technology CMOS Spin-CMOS All-Spin 

3.6 Conclusions 

 We have presented a novel non-Boolean image recognition circuit based on all-spin 

logic devices. The introduced circuit can perform all the phases of a non-Boolean pattern 
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recognition for binary images. Taking advantage of the non-volatility of ASL devices, the 

learning phase operation is performed incorporating no additional memory devices. By 

introducing the mainly similarity scheme, two different implementations of the circuit are 

proposed. As verified by simulation results, this circuit can recognize various sizes of 

binary image patterns faster than existing CMOS counterparts and consumes less power 

with an operational voltage of 5 mV. Since comparisons in this circuit are based on ASL 

majority gates, the computational complexity of the operation is less than existing circuits. 

The proposed circuit has applications in fast and low power image recognition for security, 

medical imaging, and sensing. 
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IV. ELECTRICAL-SPIN TRANSDUCTION AND LONG-RANGE 

SPINTRONIC INTERCONNECTS 

4.1.  Signal Transduction and Transfer for Spintronic and Magnetic Circuits  

Hybrid CMOS-spintronic circuits are expected to provide new and enhanced 

memory and computational functionalities [24]–[26].  Hence, passing information back 

and forth between spintronic and CMOS devices requires efficient transduction. Several 

studies have examined CMOS-spintronic interface circuits, which write and read from 

magnetoresistive random-access memory (MRAM) and spin-transfer torque magnetic 

random-access memory (STT-RAM) [114], [115], and sense amplifiers that read from 

these magnetic memories [116], [117]. These interface circuits are suitable for large 

memory arrays, in which a single large, complicated sense amplifier reads many magnetic 

tunnel junctions (MTJs).  However, in the case of signal transduction, the use of sense 

amplifiers creates prohibitive energy and circuit area overhead. The data signal of spin-

based devices can be transferred by spin-polarized currents through interconnects [50]. 

Several studies [49], [51], [52] have analyzed the transmission delay and the energy 

dissipation of short ASL interconnects for metallic, silicon, and graphene interconnects, 

respectively. The amplitudes of spin signals attenuate exponentially in lengths comparable 

to spin relaxation length (𝐿𝑆𝑅𝐿), which is generally shorter than 1 μm for metals [94]. This 

length becomes even shorter in nanoscale wires, which results from sidewall and grain 

boundary scattering in metallic wires [77]. Thus, spin signals must be amplified multiple 

times to pass through longer interconnects. These repeaters add to power dissipation and 

the wafer area, which has led to a demand for novel long interconnect designs that 
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efficiently carry spin signals over long ranges in microchips. In contrast to the amplitude 

of spin signals, that of the electrical signals does not attenuate exponentially with 

interconnect length (𝐿𝐼𝑛𝑡). Using CMOS-spintronic transducers and electrical 

interconnects, we propose a structure that transmits spin signals in long metallic 

interconnects. The proposed structure outperforms ASL repeaters for interconnects longer 

than 1.6 μm. 

This study proposes compact energy efficient transducers for converting back and forth 

magnetic states in all-spin logic (ASL) and CMOS binary signals. In this section, we 

propose two CMOS-spintronic interface circuits with simple structures based on MTJs and 

ASL gates for the transduction of electrical signals and spin signals. These transducers 

work under a wide range of supply voltage and TMR values. 

4.2.  CMOS- to Spintronic-Signal Transduction  

The transduction of CMOS data in the form of electrical voltage to spintronic data 

in the form of the magnetization orientation of magnets can be achieved by using the 

properties of ASL gates. The polarity of the electrical voltage applied to ASL gates controls 

copy and invert operations [118]. Employing this property, an ASL-based CMOS to 

spintronic transducer is shown in Figure 39. In this device, the direction of the electrical 

current passing through the fixed magnet determines the polarity of the spin accumulation 

of electrons underneath it. If the electrons are injected by the fixed magnet into the channel, 

a majority of spins underneath the magnet will have magnetic moments aligned with the 

magnetic orientation of the fixed magnet. Conversely, if the direction of the current is 

reversed and the electrons are extracted by the fixed magnet, most of the electrons will 
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have magnetic moments antiparallel to that of the fixed magnet. In both cases, the 

accumulated spins diffuse inside the non-magnetic channel towards the output magnet and 

apply a torque on the output magnet, based on the spin-torque transfer (STT) phenomenon, 

changing the orientation of the output magnetization. In summary, the direction of the 

electrical current passing through the fixed magnet determines whether the orientation of 

the output magnet becomes parallel or antiparallel to that of the fixed magnet. In Figure 

39a, when the input signal (𝑉𝐷𝐴𝑇𝐴) is 1, then transistors MN2 and MN3 are ON, but when 

𝑉𝐷𝐴𝑇𝐴 is 0, then transistors MN1, MP1, MN4, and MN5 are ON. The direction of the 

electrical current passing through the fixed magnet is designated by either a blue arrow for 

1 or purple arrow for 0.  

The transducer either inverts or copies the magnetization orientation of the fixed 

magnet to the output magnet according to whether 𝑉𝐷𝐴𝑇𝐴 is high or low. Hence, the gate 

converts electrical voltage (𝑉𝐷𝐴𝑇𝐴) to the orientation of the output magnet. The proposed 

circuit is simulated using SPICE models, which account for magnetization dynamics and 

spin transport mechanisms and are calibrated with experimental results, presented in [94]. 

The simulation results in Figure 39b show that the switching of 𝑉𝐷𝐴𝑇𝐴 from 800 mV (bit 

“1”) to 0 mV (bit “0”), changes the orientation of the output magnet to the +X direction 

(bit “1”) and then to the -X direction (bit “0”). This transducer copies the logic value of the 

𝑉𝐷𝐴𝑇𝐴 into the output magnet with a delay of 1.6 ns for high-to-low switching and a delay 

of 2.0 ns for low-to-high switching. The delay decreases as 𝑉𝐹𝑀 increases, but to ensure 

that the current density is safely below the breakdown value [71], we choose 150 mV as 

the largest simulated 𝑉𝐹𝑀 value.  For the maximum 𝑉𝐹𝑀 value, the current density in the 

copper channel from the input magnet to the ground node is less than 107𝐴/𝑐𝑚2, where 
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the breakdown current density of the channel, determined by its length and width, is close 

to 108𝐴/𝑐𝑚2 [71]. As Figure 39b shows, the current passing through the fixed magnet 

(𝐼𝐴𝑆𝐿) does not exceed 200 μA, which is less than the conventional write currents of MTJs 

[119]. 
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Figure 39: Electrical signal to spin signal transducer: (a) schematics of the transducer. 

(b) Input signal (VDATA), which switches the polarity of the voltage applied to the fixed 

magnet, which switches the output magnet accordingly. The orientation of the output 

magnet follows the input signal with a delay of 1.6 ns and 2.0 ns for high-to-low and 

low-to-high switching.  

 

4.3.  Spintronic- to CMOS-Signal Transduction  

To implement a spintronic to CMOS signal transducer, Figure 40a employs a 

magnetic tunnel junction (MTJ)-based circuit that relies on the spin-transfer torque (STT) 

mechanism for switching. An MTJ consists of two magnets encompassing an oxide layer 

in which the electrical conductance across the gate is determined by the relative difference 

between the magnetization  orientations of the two magnets [69] as 

 𝐺𝑀𝑇𝐽 = 
𝐺

2
+ 

∆𝐺

2
 �̂�1. �̂�2,  (10) 

where G = Gp + GAP, ∆G = Gp - GAP, and �̂�1 and �̂�2 represent the orientation of two 

magnets [69]. Under an assumption that Magnet 2 (�̂�2) is a fixed magnet in the +X 

direction, the resistance across the MTJ is  

 𝑅𝑀𝑇𝐽 = 
1+𝑃

𝐺𝑃 (1+𝑃�̂�1,𝑋)
,  (11) 

in which polarization factor P is defined as 

 𝑃 =  ∆𝐺 / 𝐺 =  𝑇𝑀𝑅 / (𝑇𝑀𝑅 +  2),  (12) 
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Figure 40: Spin signal to electrical signal transducer: (a) schematics of the transducer. 

(b) the changes in the orientation of the free magnet are translated into changes in 

electrical voltage on the node VN. The inverter provides a full swing between the 

ground and supply voltages at accordingly. Simulations are done for two TMR values 

of 131% (low TMR) and 355 % (high TMR). 

 

While the top layer of the MTJ of Figure 40a is a magnetic fixed layer oriented 

along the +X direction, the bottom layer is a free magnet receiving spin currents from the 

input magnet through a metallic channel. Through the STT mechanism, initiated by 

receiving spin currents, the magnetization orientation of the free magnet switches from 
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antiparallel to parallel with the direction of the magnetic fixed layer. As the change in 

direction alters the resistance across the MTJ, the voltage at node 𝑉𝑁 also changes. In 

Figure 40a, resistor 𝑅1, composed of an MTJ consisting of two fixed magnets, has a fixed 

resistance value of 
1

𝐺𝑃(1−𝑃)
. The resistances across both 𝑅1 and the MTJ depend on the 

thickness of their oxide layers. In the simulations of the this work, the TMR and resistance 

per-area values are based on the values, reported in [119]–[129]. Furthermore, the inverter 

captures the voltage changes at 𝑉𝑁 and provides a full voltage swing between 0 and VDD at 

the output.   

It is important to note that in an STTRAM, an electrical current must pass through 

MTJs for both read and write operations. Thus, the oxide thickness has to be sufficiently 

small so that the required write voltage does not become too large. As a result, a voltage 

swing across the low-resistance of an MTJ is too small to drive a CMOS inverter, requiring 

a more complicated sense amplifier. However, in the case of the proposed transducer, the 

write operation takes place via the spin current provided by the driving ASL gate. Hence, 

we can choose a large enough oxide thickness of the MTJ, which produces a large enough 

voltage swing to directly drive a CMOS inverter. 

The large thickness of the oxide layer offers four more advantages: 1) lowers the 

read current, reducing the dissipated power; 2) drastically decreases the read disturb rate 

of the MTJ, 3) increases the TMR [119]–[129],  and 4) lowers the magnitude of the parasitic 

spin current injected from the fixed to the free magnet. Hence, the transducer can employ 

MTJs with TMR values as large as 300 to 400% and resistances as large as a few hundred 

kilo-ohms while STT-RAM read/write circuits rely on MTJs with TMR values of 100 to 
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200% and  resistances of one to two kilo-ohms. Simulation results of the transducer with 

two TMR values of 355% and 131% are  presented in Figure 40b. Results show that by 

increasing the TMR, the voltage swing increases at 𝑉𝑁; in the case of the TMR value of 

355%, the inverter is able to provide a full voltage swing (0 to 𝑉𝐷𝐷) at its output. The 

negligible parasitic spin flux from the fixed to the free magnet, 1000X smaller than the spin 

current injected from the input to the free magnet, is accounted for in the simulations. 

 

Figure 41: (a) Layout of an ASL gate that transfers spin signals through a metallic 

interconnect, (b) layout of ASL gates in a cascaded structure, which is a solution to 

transfer spin signals in long interconnects. The meaning of colors is defined in [33]. 
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Figure 42: ASL gate modeled by a star network of resistors for calculating the 

electrical current passing through the input magnet. 

 

4.4.  ASL Transducer for Long-Spintronic Interconnects 

Spin signals in metallic interconnects attenuate exponentially with 𝐿𝐼𝑛𝑡, so 

propagating signals along ASL interconnects longer than 1 μm is impossible. One potential 

solution is to use multiple ASL repeaters that amplify a spin signal along the interconnect, 

illustrated in Figure 41b. We analytically study ASL gates as the building blocks for short 

metallic ASL interconnects and repeaters and present an approximate solution describing 

their switching delay and energy dissipation in subsection 4.4.1. Then we introduce a new 

transducer-based interconnect in subsection 4.4.2 and compare the potential performance 

of the two approaches.  

4.4.1 Performance Analysis of ASL Repeaters 

An ASL repeater consists of a cascade of ASL gates, shown in Figure 41b. Figure 

41a illustrates an ASL gate in which the electrical current passing through the input magnet 

becomes spin-polarized at the interface of the magnet with the interconnect. We define the 

polarization factor (η) as 𝜂 =  
𝐼𝑆𝑋

𝐼𝐶
 ; IC denotes the electrical current passing through the 

magnet, and ISX denotes the spin-polarized current at the interface. 

Generalized Ohm’s law, including spin currents for the interface, is [130] 
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[

𝐼𝐶
𝐼𝑆𝑋
𝐼𝑆𝑌
𝐼𝑆𝑍

] = [

𝐺↑↑ + 𝐺↓↓ 𝐺↑↑ − 𝐺↓↓ 0 0
𝐺↑↑ − 𝐺↓↓ 𝐺↑↑ + 𝐺↓↓ 0 0

0 0 2Re𝐺↑↓ 2Im𝐺↑↓

0 0 −2Im𝐺↑↓ 2Re𝐺↑↓

] [

𝑉𝑁 − 𝑉𝐹

𝑉𝑆𝑋

𝑉𝑆𝑌

𝑉𝑆𝑍

],  

(13) 

where 𝐺↑↑, 𝐺↓↓, and 𝐺↑↓ are matrix elements derived from spin scattering at the magnet-

interconnect interface  [130]. Thus, by defining Gu = G↑↑ + G↓↓ and Gd = G↑↑ - G↓↓, the 

polarization factor is 

 𝜂 =  𝐺𝑑 +
𝐺𝑢

𝐺𝑑
(1 − 𝑅1𝐺𝑢),  (14) 

The resistances R1, R2, and RG are shown in Figure 42, where R1 is predominantly the 

interface resistance between the metallic channel and the input magnet, R2 is the interface 

resistance between the metallic channel and the output magnet plus the resistance of the 

metallic channel between the input and the output magnets, and RG is the resistance to 

ground. To ensure non-reciprocity (i.e., the magnetization of the input magnet determines 

that of the output magnet and not the other way around), 𝑅1 must be smaller than 𝑅2. For 

an ASL device with a short channel (interconnect) length of ~150 nm, 𝑅1 =

2.6 𝛺, 𝑎𝑛𝑑 𝑅2 = 8.2 𝛺. However, for an ASL with a longer interconnect length of 600 nm, 

𝑅1 = 2.6 𝛺, 𝑎𝑛𝑑 𝑅2 = 16 𝛺. By applying KCL to the star network of Figure 42 and 

connecting both magnets to the same supply voltage levels, 𝑉𝐹𝑀1 = 𝑉𝐹𝑀2 = 𝑉𝐹𝑀, the 

voltage of node e becomes 𝑉𝐹𝑀(𝑅1𝑅𝐺 + 𝑅2𝑅𝐺) (𝑅1𝑅2 + 𝑅2𝑅𝐺 + 𝑅𝐺𝑅1)⁄ . Thus, we derive 

the electrical current passing through the input magnet as 𝐼𝐼𝑛 =

 (𝑉𝐹𝑀 − 𝑉𝑒) 𝑅1 = 𝑉𝐹𝑀𝑅2 𝛥⁄⁄ , in which ∆ =  𝑅1𝑅2 + 𝑅2𝑅𝐺 + 𝑅𝐺𝑅1; hence, the spin-
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polarized current at the interface of the interconnect and the input magnet (𝐼𝑆,𝐼𝑛)  is derived 

as  

 𝐼𝑆,𝐼𝑛 =  𝜂𝐼𝐼𝑛 = 𝜂
𝑉𝐹𝑀𝑅2

𝛥
,  (15) 

The spin current diffuses along the interconnect and experiences exponential attenuation 

because of the spin relaxation mechanisms. Hence, the spin-polarized current at the 

interfaces of the interconnect with the output magnet (𝐼𝑆,𝑂𝑢𝑡) will be 

 
𝐼S,Out = 𝐼S,In 𝑒

−
𝐿Int
𝐿SRL = 𝜂

𝑉𝐹𝑀𝑅2

∆
 𝑒

−
𝐿𝐼𝑛𝑡
𝐿𝑆𝑅𝐿 .  

(16) 

 The spin current applied to a magnet exerts a torque on the magnet, which, if strong 

enough, switches the magnetization orientation of the magnet. The minimum current 

needed to switch a magnet, that is, the critical current (𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙), is defined as [131] 

 𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 
4𝑒𝛼𝐸𝑏

𝜂ℏ
(1 +

𝐻𝑆̅̅ ̅̅

2𝐻𝑈̅̅ ̅̅̅
),  (17) 

where 𝐻𝑆
̅̅ ̅ and 𝐻𝑈

̅̅ ̅̅  represent the Z-projections of the demagnetization field and the uniaxial 

anisotropy field, respectively. In CGS units, 𝐻𝑆
̅̅ ̅ = 4𝜋𝑀𝑆𝑁𝑍, where the demagnetization 

tensor 𝑁 is a tensor determined by the geometrical shape of the magnets and 𝑀𝑆 is the 

saturation magnetization of the magnets. The perpendicular uniaxial anisotropy field 

resulting from the crystal structure of the magnets is specified as 𝐻𝑈 = 𝐻𝑘𝑚𝑧�̂�, in which 

𝐻𝑘 is the Stoner–Wohlfarth field, which is related to the energy density, K, of the magnets 

[131]; thus, the magnitude of the Z-projection of the anisotropy field is 
2𝐾

𝜇0𝑀𝑆
. As the spin-
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polarized current reaching the output magnet increases, the magnet switches faster, we 

define an overdrive factor (𝜎) as  

 

Figure 43: Delay of ASL repeaters is compared to that of electrical communication of 

spin information through transduction. For long lengths, the delay of ASL gates 

increases exponentially with length as predicted by the analytical equation. 

Meanwhile, for short lengths, the delay increases linearly because the linear terms of 

the Taylor expansion of delay are dominant.  Similarly, the delay of ASL repeaters 

increases linearly with 𝐋𝐈𝐧𝐭 for short lengths and exponentially for long lengths. 

Although with multiple ASLs, the linear region is extended, the delay of the electrical 

interconnect is still shorter than that of the repeaters even for 𝑳𝑰𝒏𝒕 as small as 1.25 

μm. 

 
σ =

𝐼𝑆,𝑂𝑢𝑡

𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙
=

𝜂𝑉𝐹𝑀𝑅2

∆.𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙
 𝑒

−
𝐿𝐼𝑛𝑡
𝐿𝑆𝑅𝐿 ,  

(18) 

The spin-polarized current applied to a magnet determines the switching delay of 

the magnet as [93] 
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𝜏 =

𝜏0ln (
𝜋

√〈𝜙0
2〉

)

𝐼𝑆,𝑂𝑢𝑡
𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙

 − 1
,  

(19) 

where ϕ0 is the initial angle of switching and 𝜏0 is a fitting parameter. The stochastic 

thermal motion of electrons of a magnet generates thermal noise modeled as white 

Gaussian noise. In the presence of the uniaxial anisotropy field, the demagnetization field, 

and thermal noise, thermal fluctuations obey: 

 〈𝜙0
2〉 =

𝑘𝑏𝑇

𝜇0𝑀𝑆𝑉(𝐻𝑈−𝑀𝑆(𝑁𝑋−𝑁𝑌))
=

𝑘𝑏𝑇

𝜇0𝑀𝑆𝑉𝐻
=

1

𝜇0𝑀𝑆𝑉𝐻𝛽
,  (20) 

in which V is the volume of the magnet, 𝛽 =
1

𝑘𝑏𝑇
 is the thermodynamic beta, and 𝐻 is 𝐻𝑈 −

𝑀𝑆(𝑁𝑋 − 𝑁𝑌). Thus, the switching delay of ASL gates is derived as 

 𝜏𝑆𝑊 =
𝜏0

2

ln (𝜋2𝜇0𝑀𝑆𝑉𝐻𝛽)

𝜎−1
,  (21) 

The equation is simplified when 𝜎 ≫ 1, in which 

 
𝜏𝑆𝑊 =

𝜏0𝑙𝑛(𝜋2𝜇0𝑀𝑆𝑉𝐻𝛽)

2𝜎
=

𝜏0𝛥.𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑛(𝜋2𝜇0𝑀𝑆𝑉𝐻𝛽)

2𝜂𝑉𝐹𝑀𝑅2
𝑒

𝐿𝐼𝑛𝑡
𝐿𝑆𝑅𝐿 ,  

(22) 

For the magnet described in [131], we require 𝑉𝐹𝑀 ≫ 30 μV, which yields 𝜎 ≫ 1. 

Moreover, (22) shows that 𝜏𝑆𝑊 is exponentially dependent on 𝐿𝐼𝑛𝑡, and 𝜏𝑆𝑊 sharply 

increases for 𝐿𝐼𝑛𝑡 > 𝐿𝑆𝑅𝐿 [118]. The delay calculated from (22) is compared to the results 

from rigorous SPICE simulations (Figure 43). Simulations are repeated 100 times for each 

data point to capture the effect of thermal noise in which error bars represent the + −⁄ 𝜎 
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along the mean value of data points. Furthermore, the switching delay, 𝜏𝑆𝑊, is inversely 

proportional to 𝑉𝐹𝑀. Hence, to transfer bits at a faster rate, 𝑉𝐷𝐷 must increase 

proportionally. 
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Figure 44: Proposed long spintronic interconnect. (a) First, the spin signals are 

converted to electrical signals using a spin to CMOS signal transducer (SCT); then, 

the electrical signal is transmitted through a long electrical interconnect and 

converted back to spin signals using a CMOS to the spin signal transducer (CST). (b) 

The magnetization orientation of the output magnet is the inverse of the 

magnetization orientation of the input magnet with a delay of 1.6 ns. (c) The layout 

consists of two transducers with minimum feature sizes connected to an electrical 

interconnect. 

 

By taking the calculated delay and the power dissipation into account, we can 

derive the energy dissipation of ASL gates. The  power dissipation of the ASLs is P =

ΣRiIi
2, in  which I1, I2, and IG, the electrical currents passing through the resistors R1,  R2, 

and 𝑅𝐺 , are (𝑉𝐹𝑀 − 𝑉𝑒) 𝑅1⁄ ,  (𝑉𝐹𝑀 − 𝑉𝑒) 𝑅2⁄ , and 𝑉𝑒 𝑅𝐺⁄ , respectively. Thus, the power 

dissipation of ASLs is 𝑃 = 𝑉𝐷𝐷
2 𝑅1+𝑅2

∆
. Hence, the energy dissipation per transferred bit is 
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𝐸 = 𝑃𝜏𝑆𝑊 = 𝑉𝐹𝑀

𝜏0(𝑅1+𝑅2)𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑛(𝜋2𝜇0𝑀𝑆𝑉𝐻𝛽)

2𝑅2
𝑒

𝐿𝐼𝑛𝑡
𝐿𝑆𝑅𝐿 ,  

(23) 

Energy dissipation E shows the same dependency on 𝐿𝐼𝑛𝑡 as 𝜏𝑆𝑊. Moreover, E is linearly 

proportional to 𝑉𝐹𝑀, which confirms the tradeoff between the bit transfer rate and 𝑉𝐹𝑀, 

which was discussed before. The power dissipation further increases because of the non-

ideal ground contact and supply voltage wires, which are accounted for in simulations 

under an assumption that 300 Ω of resistance has been added to the supply path [38]; that 

is, 𝑅1 and 𝑅2 are replaced by 𝑅1
′ = 𝑅1 + 300 𝛺 and 𝑅2

′ = 𝑅2 + 300 𝛺 in (23). For a 

repeater composed of N ASLs, we can approximate the delay by  𝜏𝑅𝑒𝑝𝑒𝑎𝑡𝑒𝑟 = 𝑁𝜏𝑆𝑊 and 

the fabrication area by the layout shown in Figure 41. 

Table 3: Simulation Parameters for the long-range spintronic interconnect. 

Interface Parameters (Co/Cu) 

Majority Spin Conductance 

Minority Spin Conductance 

Real Spin-Mixing Conductance 

Imaginary Spin-Mixing Conductance 

𝐺↑ 

𝐺↓ 

Re 𝐺↑↓ 

Im 𝐺↑↓ 

0.375 1/Ω  

0.125 1/Ω 

3.43751 1/Ω 

9.37× 10−3 1/Ω 

Magnets (Co) 

Magnet Length 

Magnet Width 

Magnet Height 

Gilbert Damping Coefficient 

Saturation Magnetization 

Demagnetization Tensor Coefficient 

Demagnetization Tensor Coefficient 

Demagnetization Tensor Coefficient 

Magnet Barrier 

𝐿𝑋 

𝐿𝑌 

𝐿𝑍 

𝛼 

𝑀𝑆 

𝑁𝑋 

𝑁𝑌 

𝑁𝑧 

𝛥/𝐾𝐵𝑇 

66 nm  

22 nm 

3 nm 

0.005 

1.45× 106 A/M  

0.0443 

0.1390 

0.8166 

40 

Channels (Cu)  

Channel Length 

Channel Width  

Aspect Ratio 

𝐿𝐼𝑛𝑡 

𝑊𝐼𝑛𝑡 

AR 

142 nm  

44 nm 

1 
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Transistors [41] 

Half Pitch Size 

Length 

Width (Inverters) 

Width (Drivers) 

F 

𝐿𝑋/F 

𝑊𝑋/F 

𝑊𝑋/F 

22 nm  

1 

5 

30 

 

4.4.2 Proposed Long-Range Spintronic Interconnect  

Fast transfer of spin signals in long-range interconnects requires an increase in the 

number of cascaded ASLs, N; however, the power dissipation of ASL repeaters increases 

proportionally with N.  Figure 44a shows the proposed transducer-based interconnect for 

the electrical transmission of spin information. The interconnect converts the spin signals 

into electrical signals, which transfer along an electrical interconnect, a more efficient way 

to communicate signals over long distances.  Then the electrical signals are converted back 

into spin signals. Figure 44b shows the simulation results of the interconnect. The delay of 

the proposed interconnect is compared to that of the ASL repeaters in Figure 43. As the 

figure illustrates, the switching delay of ASL gates can be approximated as a linear function 

of 𝐿𝐼𝑛𝑡 for lengths shorter than 𝐿𝑆𝑅𝐿, but it exhibits an exponential dependence on 𝐿𝐼𝑛𝑡 for 

𝐿𝐼𝑛𝑡 ≫ 𝐿𝑆𝑅𝐿. The slope of the delay in the linear region is 
𝜏0𝛥.𝐼𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑙𝑛(𝜋2𝜇0𝑀𝑆𝑉𝐻𝛽)

2𝜂𝑉𝐹𝑀𝑅2𝐿𝑆𝑅𝐿
 . For a 

repeater composed of N-cascaded ASLs, the linear region extends proportional to N, which 

is consistent with the simulation results of Figure 43. The figure shows that the switching 

delay of the proposed interconnect is lower than that of the ASL repeaters even for a length 

of 1.25 μm, the shortest possible length of the interconnect using transducers. As illustrated 

in the layout in Figure 44c, the length of the interconnect is longer than 57 F (half-pitch 

size), in which the shortest possible length is 1.25 𝜇m for 𝐹 = 22 𝑛𝑚, shown in Table 3.  
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Figure 45: Clocking schemes used to minimize the energy dissipation of the ASL 

repeaters. Clocks are on αT before and after the mean switching time to cancel the 

potential impact of thermal noise. α is assumed to be 25% in the simulations. 

 

Figure 46: Energy dissipation per unit length of the ASL repeaters is compared to 

that of the proposed spintronic interconnect. The dissipated energy of the proposed 

interconnect is lower than that of repeaters even for 𝑳𝑰𝒏𝒕 as small as 1.25 μm. 



 84 

Although the energy dissipation of repeaters increases as the number of cascaded 

ASLs for short interconnects increases, but the repeaters with more cascaded ASLs 

dissipate lower power for long interconnects. 

 

The delay of the transducer-based interconnect increases with 𝐿𝐼𝑛𝑡 because the 

parasitic resistances and capacitances of electrical interconnects increase with 𝐿𝐼𝑛𝑡; 

however, the rate of the increase in the delay is far smaller than that of the linear region of 

ASL repeaters. In these devices, the supply voltage is turned on only when the signals are 

passing through the gate. Thus, the supply voltage clocking, shown in Figure 45, reduces 

energy dissipation with turning off the device once data has transmitted along the 

interconnect [132]. We account for the energy dissipation in the driving transistors, which 

comes in two forms: 1) the energy dissipation due to the drain-source current (𝐼𝐷𝑉𝐷𝑆𝜏), 2) 

the energy dissipation due to charging and discharging the transistor capacitance (𝐶𝑉2). 

Because of the relatively large current amplitude and the pulse width needed to switch a 

magnet, the second component is more than 100X smaller than the first one and can be 

ignored. The power dissipation associated with clock generation and distribution has not 

been incorporated in this work. While the proposed interconnect scheme requires only two 

transistors for supply clocking, the ASL repeater requires 𝑁 + 1 transistors where N is the 

number of ASL stages in the repeater. Hence, having a simpler clocking circuit, is another 

advantage of the proposed transducer-based interconnect. In the figure, to counter the 

impact of thermal noise, clocks are on 𝛼T before and after the mean switching time. The 

energy dissipated by the supply voltages is shown in Figure 46. As 𝐿𝐼𝑛𝑡 increases, the 

energy per-unit length remains constant in the linear region and increases exponentially 

afterwards. Hence, repeaters composed of two, three, and four ASLs minimize the energy 
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dissipation of interconnects longer than 1.3 μm, 2.5 μm, and 3.7 μm, respectively. The 

transducer-based interconnect dissipates less energy than ASL repeaters, even for 

interconnects as short as 1.25 μm. Compared to energy per-unit length of the ASL 

repeaters, that of the electrical interconnect decreases as the length of the interconnect 

increases since energy dissipation, which mostly takes place in the transduction of signals, 

experiences a far smaller increase.  Despite the advantage of the transmission of signals 

using transducers over that of ASL repeaters in terms of switching delay and energy 

dissipation, ASL repeaters have an advantage in terms of a smaller footprint area. Taking 

all these factors into account, we show the area-delay-power product (ADPP) metric [133], 

[134], [135] for both interconnect schemes in Figure 47, which shows that the proposed 

transduction based scheme, utilizing electrical transmission, has an advantage in terms of 

the ADPP for interconnects as short as 1.6 𝜇m. Although the proposed scheme compared 

to the ASL repeater scheme shows a significant improvement in terms of delay, energy, 

and ADPP, the proposed structure cannot compete with electrical interconnects used in 

purely CMOS circuits. 
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Figure 47: Area-delay-power product (ADPP) is a measure that takes delay, power 

dissipation, and area into account. Although the proposed interconnect has larger 

area overhead, its advantage in terms of energy enables it to outperform ASL 

repeaters for lengths longer than 1.6 μm. 

 

Figure 48 depicts the delay and energy dissipation of signal transduction and 

transmission under various supply voltage (VDD) and magnet voltage (VFM) values. In 

Figure 48a, 𝑉𝐷𝐷 is fixed at 650 mV while 𝑉𝐹𝑀 changes from 80 mV to 150 mV. In Figure 

48b, 𝑉𝐹𝑀 remains fixed at 120 mV while 𝑉𝐷𝐷 changes from 300 mV to 950 mV.  Figure 

48c exhibits the energy-delay product (EDP), which decreases 49% by increasing VDD from 

300 mV to 950; Figure 48d shows that the EDP decreases 31% by decreasing VFM from 80 

mV to 150.  Hence, we minimize EDP by operating the proposed device under lower VDD 

and higher VFM voltage values. The thickness of the oxide layer potentially changes the 

delay and the energy dissipation of the proposed interconnect. The oxide thickness, subject 

to variations by various fabrication processes, changes both the TMR and the resistance of 

MTJs. To capture potential variations, Figure 49 illustrates changes in the switching delay 

by changing TMR values. The simulations use the relationship between the TMR and the 

oxide thickness from [129]. The figure shows that the increase of the TMR from 125% to 

450% decreases the switching delay by less than 10%. Although by increasing TMR, 

voltage sweep 
2𝑃

4−𝑃2 𝑉𝐷𝐷 becomes larger at 𝑉𝑁, but the voltage sweep is already large enough 

for the inverter, even for TMR values as low as 125%. In these simulations, the TMR and 

resistance per-area values are based on the values mentioned in [119]–[129].  
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Figure 48: Delay and energy dissipation variations vs. (a) the voltage applied to the 

magnets (𝑽𝑭𝑴) and (b) the supply voltage (𝑽𝑫𝑫). Energy-delay product (EDP) 

variations vs. (c) 𝑽𝑭𝑴 and (d) 𝑽𝑫𝑫. The interconnect must operate at the lowest 𝑽𝑫𝑫 

and the highest 𝑽𝑭𝑴 voltage values without reaching its breakdown current density 



 88 

to minimize the energy-delay product. The error bars represent variations in the 

delay and energy dissipation generated by the stochastic thermal noise of magnets. 

 

Figure 49: As TMR increases, the voltage swing at node 𝑽𝑵 of Figure 43 becomes 

larger; hence, the delay becomes smaller. However, the voltage swing is relatively 

large even for TMR values as low as 125%, and the improvement in switching delay 

by increasing TMR is limited to less than 10%. 

 

4.5.  Conclusions 

This section proposes two simple, yet efficient CMOS-spintronic transducer 

circuits that convert back and forth between spin signals and electrical signals in hybrid 

CMOS-spintronic circuits, which must efficiently transmit spin signals in both short and 

long ranges. Unlike electrical signals, spin signals, however, suffer from exponential decay 

of their amplitudes as their interconnect lengths increase. Amplifying spin signals through 

long-range interconnects using repeaters is an inefficient method of transmitting spin 
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signals. Thus, using the proposed transducer circuits, we propose a new scheme for long-

range spintronic interconnects. Although the transducers add to circuitry and area 

overhead, the proposed spintronic interconnect outperforms all-spin based repeaters in 

terms of transmission delay, energy dissipation per bit per unit length, and area-delay-

power product (ADPP) for interconnects longer than 1.6 𝜇m.  
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V. MAGNETOSTRICTION-ASSISTED ALL-SPIN LOGIC DEVICE 

5.1. Magnetostriction-Assisted All-Spin Logic (MA-ASL) Device Proposal 

To improve the performance of the all-spin logic device, two limiting factors must be 

addressed. First, the ASL proposal is based on a non-local spin valve (NLSV), in which a 

pure spin current applies a spin-transfer torque (STT) on a free magnet and flips its 

orientation. Most of the spin current, however, is shunted to ground and wasted. Moreover, 

the experimental evidence for the operation of the NLSV is limited to only one report [136]. 

Second, the reliable 1800 switching of a magnet using STT is known to be quite slow (~ 

few nanoseconds) and requires large current densities [72]. Providing large currents 

through driver transistors for such large periods of time, results in prohibitively large 

energy per binary switching operations. As a result, even when supply clocking is used 

[132], a 32-bit arithmetic-logic unit (ALU) based on ASL is projected to dissipate more 

than four orders of magnitude more energy compared to its CMOS counterpart [33]. 

However, recent theoretical predictions show that the reliable switching of magnets, 

initialized at their energy saddle point, requires significantly lower energy. Moreover, 90𝑂 

magnetization reversal through magnetostriction is experimentally demonstrated and 

shown to be more energy efficient than STT. Thus, by utilizing magnetostrictive switching 

and STT switching from the saddle point of energy profile, I proposed the 

magnetostriction-assisted all-spin logic (MA-ASL) device. In contrast to ASL, the STT is 

created by a conventional spin valve (CSV) structure, a well understood and experimentally 

demonstrated structure [137]–[140]. With an appropriate clocking for STT and 

magnetostriction, the device can be cascaded in a domino logic scheme; thus, the overall 
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delay and the energy dissipation of a more complicated circuit like a 32-bit ALU further 

improves. In this section, the impact of pulse skew and amplitude, rise time, fall time, and 

temperature on the delay and the energy performance of the proposed device is 

investigated. Moreover, the performance of a 32-bit ALU designed based on the proposed 

device is benchmarked against various spintronic and CMOS counterparts. Moreover, 

authors investigate the distribution of strain in the hybrid piezoelectric-magnetic structure. 

 

 

Figure 50: (a) Schematics of the proposed device and driver circuit. (b) By applying 

the pulse, VPIEZO, OUT, at T0, Magnet 2 reorients from a stable state the +x direction to 

the meta-stable state, the y direction. Then, VPIEZO, OUT is released, and the current 

provided by the driver circuit, IPW, is turned on. The current becomes spin polarized 

when passing through Magnet 1, oriented in the +x direction, and applies a torque to 

Magnet 2, which reorients from the y direction to the –x direction, the other stable 



 92 

state. (c) First, the orientation of Magnet 2, rotates by 900 from �⃗⃗⃗� 𝒊 to �⃗⃗⃗� 𝒎 using 

magnetostrictive switching; then, it reorients by 900 from �⃗⃗⃗� 𝒎 to �⃗⃗⃗� 𝒇 using the spin-

transfer torque. 

5.2. Device Operation 

A single stage MA-ASL device is composed of a transmitter Magnet 1 and a 

receiver Magnet 2 connected via a metallic (Cu) channel forming a CSV structure, Figure 

50a. First, the receiver magnet is reoriented via magnetostrictive switching due to the 

voltage applied to the piezoelectric layer at the receiver side, VPIEZO, OUT, from 𝑇0 to 𝑇1, as 

shown in Figure 50b. The applied voltage generates an anisotropic strain that couples to 

Magnet 2 altering the magnetoelastic energy of the magnet; therefore, the easy axis rotates 

from the x to the y direction. As a result, Magnet 2 rotates to the y direction, Figure 50c. 

The magnet may fall randomly into either +y or -y directions with equal probabilities, 

because of the symmetry of the structure with respect to the xz plane. However, both 

directions represent the symmetrical, metastable saddle-points of the device, neither of 

logic 0 or 1. By switching off 𝑉𝑃𝐼𝐸𝑍𝑂,𝑂𝑈𝑇 at 𝑇1, the easy axis rotates back to the x direction; 

thus, the magnet will be placed at the meta-stable saddle point of its energy profile, and the 

magnet will be equally probable to fall into the +x or –x directions. To break the symmetry, 

a current with spin polarization opposite to the magnetic orientation of magnet 1 is applied 

to Magnet 2 from 𝑇1 to 𝑇2, forcing the magnet to rotate to -x direction (opposite to Magnet 

1), as shown in Figure 50c. The proposed structure acts as an inverter. Providing a large 

pulse current at a very low voltage, requires a large portion of the energy to be dissipated 

in the driver transistors; hence, the driver circuit, shown in Figure 50a, is proposed to more 

efficiently generate the required pulse current. To reduce the energy dissipation, the voltage 

drop on the driver transistor is limited to the 𝑉𝐷𝑆 voltage of a CMOS transistor. 



 93 

To model the operation of the driver transistors, predictive technology models are 

used, while SPICE models are developed to model the operation of the spintronic parts 

following a similar approach taken in [50]. To account for the physics of the device, we 

need to self-consistently solve the equations, governing the dynamics of the magnetization, 

spin transport in the metallic channel, and magnetostriction.  For the MA-ASL device, the 

anisotropic field, �⃗⃗� 𝑈, is due to the variations in the magnetoelastic energy, 𝐸𝑀𝐸  [64], [141], 

[142], 

 𝐸𝑀𝐸 = −
3

2
𝜆𝑌 [(𝑚𝑥

2 −
1

3
) 𝜖𝑥𝑥 + (𝑚𝑦

2 −
1

3
) 𝜖𝑦𝑦 + (𝑚𝑧

2 −
1

3
) 𝜖𝑧𝑧], 

(24) 

in which, 𝜆 and 𝑌 represent the magnetostrictive coefficient and the Young’s modulus, 

respectively, and 𝑚𝑥, 𝑚𝑦, and 𝑚𝑧 are the magnetic orientation along the x, the y, and the 

z directions, respectively. In the equation, 𝜖𝑥𝑥, 𝜖𝑦𝑦, and 𝜖𝑧𝑧 are the components of the strain 

matrix; hence, the anisotropic field is derived as 

 
�⃗⃗� 𝑈 = −

1

𝜇0𝑀𝑆

𝜕𝐸

𝜕�⃗⃗� 
=

2𝐾

𝜇0𝑀𝑆
𝑚𝑌�⃗� , 

(25) 

where 𝜇0 and 𝑀𝑠 represent the permeability of free space and saturation magnetization. In 

(25), the energy density, 𝐾, due to the magnetostriction is proportional to the strain [143], 

 

 
𝐾 =

3

2
λ(𝐶11 − 𝐶12)(ϵyy − ϵxx), 

(26) 

where 𝐶11 and 𝐶22 are elastic stiffness constants [143], 

 
ϵxx = ϵ0 + d31

VPIEZO

t
, 

(27) 
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ϵyy = ϵ0 + d32

VPIEZO

t
, 

(28) 

in which 𝑑31 and 𝑑32 are piezoelectric constants and t is the thickness of the piezoelectric 

layer.  The transferred anisotropic strain to the magnet is investigated using COMSOL 

based on PMN-PT material parameters (Table 4) [144]. As Figure 51 shows, a large net 

anisotropic strain (ϵyy − ϵxx) of 1200 ppm is transferred to the magnet, when 𝑉𝑃𝐼𝐸𝑍𝑂,2 is 

100 mV. The generated strain is large enough to reorient magnets by 900. 

Spin transport equation for the metallic channel, magnetostriction, and stochastic 

LLG equations are solved self-consistently using SPICE simulations. The simulation 

parameters are shown in Table 4. Moreover, simulations are done for a 3-stage cascaded 

inverter chain of magnets as illustrated in Figure 52a. First, Magnet 2 and Magnet 3 are 

initialized in the y direction by applying piezoelectric voltage pulses, Figure 52b. Then, 

voltage pulses are turned off sequentially, and current pulses are applied to perform the 

second 90𝑜 switching. As shown in Figure 52c, by initializing the magnets simultaneously, 

the first 90𝑜 of magnetization switching, which takes ~1 ns, is more than 10 times larger 

than the second 90𝑜 switching, but is shared between the two magnets; thus, the overall 

delay is improved. The benefit of this approach obviously grows as the logic depth (the 

number of cascaded gates) increases. 
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Table 4: Simulation Parameter for the MA-ASL Device. 

Piezoelectric (PMN-PT) [144] 

Piezoelectric Constant 

Piezoelectric Constant 

Piezoelectric Height 

𝑑31 

𝑑32 

t 

813 pC/N  

-2116 pC/N 

40 nm 

Magnets (Terfenol-D) [145], [146] 

Magnet Length 

Magnet Width 

Magnet Height 

Saturation Magnetization 

Magnet Barrier 

Damping Factor 

Spin Polarization 

Resistivity 

Magnetostrictive Coefficient 

Young’s Modulus 

Temperature 

𝐿𝑋 

𝐿𝑌 

𝐿𝑍 

𝑀𝑆 

𝛥/𝐾𝐵𝑇 

𝛼 

P 

𝜌 

𝜆 

𝑌 

T 

60 nm  

30 nm 

3 nm 

1.0 T  

40 

0.1 

0.8 

60 × 10−8Ω.m 

1200 ppm 

90 GPa 

300 K 

Channels (Cu) [131] 

Channel Length 

Channel Width  

Aspect Ratio 

Conductivity 

Grain Boundary Reflection Probability 

Specularity Parameter 

Spin Relaxation Time 

Electron Mobility 

𝐿𝐼𝑛𝑡 

𝑊𝐼𝑛𝑡 

AR 

𝜎 

R 

P 

𝜏𝑆 

μ  

132 nm  

44 nm 

1 

27.4 1/μΩm2 

0.2 

0.0 

8.92 ps 

0.002 m2/Vs 
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Figure 51: Generated strain is simulated using a COMSOL model developed from the 

piezoelectric parameters of PMN-PT [144]. Results shown for (a) the device and (b) 

the cross-section of the magnet demonstrate that the net strain of 1200 ppm will be 

transferred to the magnet. 
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Figure 52: (a) Three magnets cascaded in a domino logic scheme. (b) Piezoelectric 

pulses are applied simultaneously at 𝑻𝟎 and released sequentially at 𝑻𝟏 and 𝑻𝟐 to 

perform the first 900 of the switching. The current pulses, provided by the clocking 

circuit, are applied at 𝑻𝟏 and 𝑻𝟐 to perform the second 900 of the switching via STT. 

(c) The overall delay of the inverter chain significantly reduces by simultaneously 

performing the first 900 of the switching for all magnets of a chain.  

 

5.3. 32-Bit MA-ASL ALU 

At the heart of an arithmetic logic unit (ALU) is the arithmetic operations (AO) block, 

which performs operations such as addition, subtraction, NAND, and NOR. For a 32-bit 

ALU, operations are done on two 32-bit input numbers A and B. As  

Figure 53 illustrates, the addition of A and B can be done by a 32-bit ripple carry adder 

in which the result is S. The addition operation requires propagating the carry signal, Ci 

bits, in the critical path from one bit to the next bit. Therefore, the propagation delay of 

carry bits across the 32-bit adder dominates the delay of an ALU. For a 32-bit MA-ASL 

ripple- carry adder, the critical path is comprised of 32 full adders each consisting of two 

magnets in the path. In a cascade scheme like Figure 52, all 64 magnets are initialized 

simultaneously; thus, the overall delay is 

 𝜏32−𝐵𝑖𝑡−𝐴𝑑𝑑𝑒𝑟 = 𝜏𝑀𝐸 + 64𝜏𝑆𝑇𝑇 , (29) 

where 𝜏32−𝐵𝑖𝑡−𝐴𝑑𝑑𝑒𝑟, 𝜏𝑀𝐸, and 𝜏𝑆𝑇𝑇 are the delay of the 32-bit adder, the initializing time 

of 1 ns due to magnetostrictive switching, and the delay of switching from the saddle point 

due to STT, about 35 ps for an error rate below 10−3,  respectively. Thus, the overall delay 

of the 32-bit adder will be 3.3 ns. By accounting for the 32-bit adder, repeaters at each 300 
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nm, NAND and NOR gates, and other gates of a 32-bit MA-ASL ALU, the delay and the 

energy dissipation will be 11.8 ns and 5.2 pJ, respectively. Compared to the delay and the 

energy dissipation of a 32-bit ASL ALU, those of MA-ASL show 21x and 27x 

improvement, respectively, Figure 54. However, the delay and the energy of the device 

compared to those of TFETs and CMOS devices are still larger. Although spintronic 

devices cannot compete against CMOS devices in Boolean applications, such as 32-bit 

adders and ALUs, these devices may compete against CMOS in non-Boolean applications 

because of efficient implementation of majority gates in spin-based devices. Furthermore, 

by accounting for the significant improvement of the energy and the delay of the MA-ASL 

compared to those of ASL, the device may become competitive against CMOS for non-

Boolean applications. Even in the case of Boolean computations, by taking advantage of 

pipelining in the design of complicated systems such as 32-bit ALUs, slow and low-energy 

devices may become more competitive. In a pipelining scheme, the output magnet of FAi+1 

will be initialized right after the Ci bit is generated by FAi. Thus, FAi can immediately 

operate on the next bit in line without waiting for the previous bit to propagate to the last 

magnet in the line, which represents C32.  In this scheme, the delay to generate the last bit, 

C32, is 32𝜏𝑀𝐸 + 64𝜏𝑆𝑇𝑇, larger than the delay of the domino MA-ASL adder, explained 

above. However, a new result is generated each 𝜏𝑀𝐸 + 2𝜏𝑆𝑇𝑇 instead of each 𝜏𝑀𝐸 +

64𝜏𝑆𝑇𝑇. Thus, the throughput of the 32-bit adder, the heart of an ALU block, further 

increases.  
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Figure 53: 32-bit ripple carry adder consisted of 32 full adders (FAs). Inside each full 

adder, two MA-ASLs form the critical path. Inside the 32-bit adder, carry bits must 

propagate through the critical path, comprised of 64 magnets.    
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Figure 54: Energy dissipation and delay of various spintronic, CMOS, and TFET 

technologies for implementation of a 32-bit ALU. The delay and the energy 

dissipation of MA-ASL ALU compared to those of ASL ALU, show 21x and 27x 

improvement, respectively. The benchmark setup is explained in [147]. 

 

5.4. Clocked MA-ASL 

Operating the MA-ASL device either as a domino logic or as a pipeline, requires a 

clocking scheme that precisely accounts for the times required to perform the first half of 

the switching, done through magnetostrictive switching, and the second half of the 

switching, done through applying STT. In an MA-ASL inverter, the 900 magnetic rotation 

time under STT is inversely proportional to the amplitude of the pulse current [93]; thus, 

by increasing the amplitude of the pulse current, delay decreases; hence, the width of the 

required pulse current decreases; thus, lower energy must be dissipated to reach to a certain 
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error rate, Figure 55. However, the amplitude of the pulse current is limited to the 

maximum current, not reaching to electromigration. The energy dissipation of an MA-ASL 

inverter is mainly associated with three parts: (1) the transistors of the driver circuit, 

illustrated in Figure 50a, about 1.8 fJ, (2) ohmic energy dissipation inside the MA-ASL 

device during the STT switching, about 0.2 fJ, and (3) in the form of 𝐶𝑉2 to provide pulse 

voltages of the piezoelectric, in the range of a few aJs. We have accounted for these factors 

in calculating the total energy dissipation of the device. 

 

Figure 55: Increasing the amplitude of the pulse current, lowers the required pulse 

width to reach to the same error rate in an MA-ASL inverter; thus, as pulse amplitude 

increases, lower energy is required to reach to the same error rate.  However, the 

amplitude of the pulse current cannot exceed certain maximum limits due to 

electromigration. 

 

 The proper operation of the proposed domino logic and the pipelining schemes 

depends on turning off the piezoelectric pulses and applying spin current pulses 

simultaneously at 𝑇1,  Figure 50b. However, due to factors including the inaccuracies and 
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the limitations of the fabrication processes, the two clocks perform with a negative or a 

positive pulse skew defined as 𝑇1
′ − 𝑇1 in Figure 56a. At 𝑇1, Magnet 2 is placed at the meta-

stable saddle point of the energy profile and equally probable to fall into the stable 

directions, +x or –x. In the absence of STT due to a positive pulse skew, the magnet starts 

to randomly switch to one of the stable directions; hence, when STT is applied at 𝑇1
′, 

magnetization is deviated from the y axis, the meta-stable point of energy, by an angle 𝜃′𝑚; 

thus, the longer pulse width are expected (Figure 56b). Increasing the positive pulse skew, 

increases the angle, 𝜃′𝑚; hence, pulse width must be increased. Although a negative pulse 

skew may contribute to a non-zero 𝜃′𝑚, the deviations in the case of a negative pulse skew 

compared to that of a positive pulse skew will be smaller due to the presence of the 

magnetoelastic energy. Thus, designing an MA-ASL-based circuit with a small embedded 

negative pulse skew about 5 ps offsets probable undesired positive skews due to fabrication 

inconsistencies. Moreover, the deviation from the y axis, 𝜃′𝑚, is larger for higher 

temperatures; thus, larger pulse width is required to reach to the error rate of 10−3, as 

demonstrated in Figure 56b and Figure 56c. In the simulations of Figure 56, a pulse 

amplitude 𝐼𝑃𝑊 of 450 𝜇𝐴 is assumed. 
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Figure 56: (a) Definition of pulse skew. (b) The required pulse width to reach to an 

error rate of 𝟏𝟎−𝟑 for various pulse skews in an MA-ASL inverter. Positive compared 

to negative pulse skew, has more impact on increasing pulse width. Error rate vs pulse 

width for various (c) temperatures and (d) rise times. (e) The pulse width and energy 

to reach to an error rate of 𝟏𝟎−𝟑 for various rise times. The pulse skew is assumed to 

be -5 ps in Figures (c), (d), and (e) [148].  

 

 Clocked circuits rely on the switching of clock signals from low to high and high 

to low levels. Because of parasitic resistances and capacitances, switching does not happen 

instantly rather it is performed gradually over a time interval for the low to high transition, 

rise time, 𝑇𝑟, and the high to low transition, fall time, 𝑇𝑓. The impact of rise time and fall 

time on the error rate, pulse width, and energy is studied as demonstrated in Figure 56d 
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and Figure 56e. In these simulations, the rise time and fall time are assumed to be equal 

and the pulse skew is assumed to be -5ps. As rise time increases, the applied STT to the 

metastable magnet becomes weaker; thus, 𝜃′𝑚 increases. As a result, error rate increases 

as illustrated in Figure 56d. Therefore, to reach to the error rate of  10−3 for longer rise 

times, pulse width must increase to apply more STT to the magnet. Consequently, larger 

energy dissipation is expected as demonstrated in Figure 56e. 

5.5 Material Analysis of MA-ASL Device 

To improve the performance of the ASL device, researchers have studied the target 

magnetic materials [72]. But in the case of the MA-ASL device, the magnetostrictive 

coupling of magnets and piezoelectric must be studied as well. Improving the performance 

of the device requires transferring the maximum strain at the lowest energy dissipation. In 

Figure 57a, the voltage required to transfer a net strain of 1200 ppm to the magnetic layer 

is studied for various magnetostrictive materials. In these simulations, Terfenol-D 

demonstrated the lowest required voltage and energy dissipation to transfer a net strain of 

1200 ppm to the magnetostrictive material. Moreover, the simulations exhibit the voltage 

and energy values required for piezoelectric layer thickness values of 0, 2 nm, and 5 nm to 

transfer the strain. Increasing the thickness of the piezoelectric layer will prohibit some of 

the generated strain in the piezoelectric layer to be transferred to the magnet, as 

demonstrated in Figure 58; however, the transferred strain will be more uniform. 



 106 

 

Figure 57: (a) voltage and (b) energy required to transfer a net strain of 1200 ppm to 

the magnetic layer. Simulations are done for various magnetic materials, in which 

Terfenol-D demonstrated lowest required voltage and energy dissipation for 

transferring strain. Moreover, the figure compares the transferred strain for various 

piezoelectric thickness values. 

 

Figure 58: Transferred strain to the magnet vs the thickness of the Pt layer between 

the piezoelectric and magnetic layers. 
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 The transferred strain to the magnetic layer not only depends on the 

magnetostrictive material but also depends on the magnitude of the generated strain in the 

piezoelectric layer, which depends on the geometrical dimensions of the piezoelectric layer 

and the applied voltage value, as shown in Figure 59. In Figure 59a, definitions used for 

the piezoelectric length and width are shown. In Figure 59b, the transferred strain at a 

constant applied voltage value is studied. The maximum transferred strain is achieved when 

the piezoelectric length is shorter than 150 nm and the piezoelectric width is between 60 

nm to 90 nm. In these simulations, the magnet length is assumed to be 60 nm, and the 

magnet width is assumed to be 30 nm. As Figure 59c represents, the same range of 

piezoelectric dimensions will result in the lowest applied voltage values to transfer a net 

strain of 1200 ppm to the magnetostrictive layer. However, the same range of geometrical 

dimensions will not result in the lowest energy dissipation, because of the capacitive nature 

of energy dissipation in the piezoelectric layer, in which 

 𝐸𝑃𝐼𝐸𝑍𝑂 =
1

2
𝐶𝑃𝐼𝐸𝑍𝑂𝑉2.  (30) 

In this equation, 𝐶𝑃𝐼𝐸𝑍𝑂 is proportional to the piezoelectric length and width. Thus, by 

making the piezoelectric layer smaller, the energy dissipation decreases, Figure 59d, even 

if the piezoelectric width becomes smaller than 60 nm. 
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Figure 59: Analysis on the transferred strain vs geometrical dimensions of the 

piezoelectric layer. (a) definition of piezoelectric dimensions. (b) Transferred strain 

at a constant 𝐕𝐏𝐈𝐄𝐙𝐎 voltage of 100 mV. The required (c) voltage and (d) energy to 

transfer a net strain of 1200 ppm.  

 

5.5. Conclusions 

Studies have examined ASL devices for various Boolean and non-Boolean 

applications owning to their efficient implementation of majority gates, low voltage 

operation, and non-volatile memory. This section proposes an ASL-based heterostructure 

of magnets and piezoelectric that employs both magnetostriction and STT to perform 

magnetization reversal. The proposed device excels in domino logic and pipelining 

schemes using the driver circuit, proposed in this section. The performance of the device 

is benchmarked against ASL, TFETs, and CMOS technologies. This work illustrates that 
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the energy and the delay performance of a 32-bit ALU designed by the MA-ASL device 

compared to those of the ASL device show 21x and 27x improvement, respectively. 

However, the device cannot compete against CMOS devices in implementing Boolean 

functions, but the device, augmented by the advances in piezoelectric and magnetic 

materials, may become competitive against CMOS in implementing non-Boolean 

functions. 
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VI. HYBRID PIEZOELECTRIC-MAGNETIC NEURONS: A 

PROPOSAL FOR ENERGY-EFFICIENT MACHINE LEARNING 

6.1  Spintronic Artificial Neural Networks 

Deep learning enabled by developments in artificial neural networks (ANNs) has 

attracted special attention in recent years [149]. Cognitive learning researchers have used 

ANNs to simulate the natural learning process of the brain and improve the precision of 

speech recognition, the accuracy of pattern finding, and the reliability of self-driving cars 

[150]–[154]. Modern computer architectures struggle to emulate an ANN, even when 

processing on highly parallelized GPU architectures [155], [156]. To circumvent this 

challenge, researchers have turned to investigate how to integrate neural networks directly 

into hardware. Implementing ANNs as conventional CMOS hardware reduces the power 

consumption by three orders of magnitude [157]. Even with these improvements, CMOS 

neuron implementations are inefficient in energy consumption and die area, leading to 

increasing interest in beyond-CMOS devices for implementing neurons. Most notably, 

spin-based devices have been proposed as artificial neurons with simpler structure and 

lower energy consumption than their CMOS counterparts [157], [158]. These spintronic 

devices have shown to holistically mimic properties of neurons, providing advantages in 

circuit simplicity, adaptability, and energy efficiency [158]. Moreover, spintronic devices 

inherently offer non-volatile memory [159], [160]. ANNs need stored information for 

synaptic weights between communicating neurons; thus, having memory coupled with the 

circuit reduces energy dissipation and memory bandwidth, helping circumvent the von 

Neumann bottleneck. 
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Figure 60: One of the most popular applications of machine learning algorithms is 

image classification and facial recognition. 

Several spin-based neurons are implemented using tunnel magnetoresistance 

(TMR) in magnetic tunnel junctions (MTJs) [129] coupled with various phenomena such 

as domain-wall (DW) motion [161], [162], spin transfer torque (STT) generated by lateral 

spin valves (LSVs) [65], [158], and spin-Hall effect (SHE) [151], [156]. While these 

devices are proven to mimic neural properties, some of their inherent drawbacks must be 

addressed. The slow switching speed of DW-based neurons prohibits them from being an 

ideal candidate for the fast implementation of a neuron. To provide non-reciprocity for the 

LSV neuron, the output magnet is preset by 90° reorientation to its saddle point of energy 

profile using the STT, generated by preset spin currents. However, the large required 

current yields substantial energy dissipation in the device. Recent studies on the 

magnetostriction-assisted all-spin logic (MA-ASL) device, a novel spin valve proposal 

made of a hybrid structure of magnets and piezoelectrics, have shown the reduction of 

switching energy by two orders of magnitude [163], [164], as discussed in Section V. 

Moreover, the switching energy can be reduced in an MA-ASL device by employing a 90° 

magnetostrictive switching, experimentally demonstrated in [64] and shown to be more 

robust to thermal noise [65]. Using these recent advances, this work proposes a spin-based 
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neuron based on an MA-ASL device and an MTJ. The proposed structure integrates the 

advantages of previously proposed spintronic neurons with those of MA-ASL creating a 

structure that can be implemented into large-scale ANNs. 

6.2 Spin Neuron Proposal 

6.2.1 Neuron Functionality 

The proposed neuron, shown in Figure 62, is a modified MA-ASL structure whose 

output magnet is the free magnetic layer of an MTJ. Similar to an MA-ASL device, first, 

the magnetization is rotated by 90𝑜 using magnetostrictive switching. As Figure 61a 

shows, 800 ppm of strain is transferred to the output magnet, large enough to switch the 

output magnet. In the second phase of operation, the input voltages, shown for six inputs 

(IN1–IN6) in Figure 62 as an example, produce charge currents that flow through the 

corresponding input magnets and become spin-polarized at the interfaces with the metallic 

channel. These spin-polarized currents combine below the output magnet according to the 

sum, as shown in Figure 61b, 

 
𝐼𝑠,𝑜𝑢𝑡 = ∑ 𝐼𝑠,𝑗 ≈𝑗  ∑ 𝜂𝑗𝑒

−𝐿𝑗

𝐿𝑆𝑅𝐿,𝑗𝐼𝑐,𝑗,𝑗   
(31) 

where Is,out  is the spin current injected into the output magnet, Is,j’s are the spin current 

contributions from each magnet j, and Ic,j’s are the input charge currents [165]. The distance 

between each input magnet and the output magnet is represented by Lj. The spin 

polarization at the interface of each magnet and channel is represented by ηj. The spin 
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relaxation length, LSRL,j, is affected by the grain boundary and sidewall scattering due to 

size effects and material properties of the metallic channel [118]. 

 

Figure 61: (a) Transferred strain to the magnet is 800 ppm, lower than that to an MA-

ASL magnet; however, the transferred strain is enough to rotate the magnetization. 

(b) shows the path of applied spin current through the output magnet to ground. 

 

Figure 62: (a) Proposed MA-ASL neuron, shown with six inputs. The net spin current 

in the interconnect applies STT to the free layer of the neuron MTJ in timing with 

the piezoelectric clock, switching the orientation of the neuron output [166]. (b) 

Biological neural network [162]. 
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The net injected spin current, Is,out , applies an STT to the output magnet. If strong enough, 

the STT will rotate the output magnetization, �̂�𝑜𝑢𝑡. The output magnet is in contact with 

an MgO layer that separates it from a magnet fixed in the +x direction, forming a three-

layer MTJ. As the output magnetization changes, the resistance across the MTJ also 

changes, following the equation, 

 𝑅𝑀𝑇𝐽 =
1+𝑃

𝐺𝑃(1+𝑃�̂�𝑜𝑢𝑡,𝑋)
,  (32) 

where RMTJ is the resistance of the MTJ,  �̂�𝑜𝑢𝑡,𝑋 is the x-component of �̂�𝑜𝑢𝑡 , and GP is the 

conductance of the MTJ in its low-resistance state, the +x direction [165]. The polarization 

factor, P, is 

 𝑃 =
𝐺𝑃−𝐺𝐴𝑃

𝐺𝑃+𝐺𝐴𝑃
=

𝑇𝑀𝑅

𝑇𝑀𝑅+2
,  (33) 

where GAP is the conductance of the MTJ in its high-resistance antiparallel state, the -x 

direction [165]. As shown in Figure 62, the change in the resistance of the MTJ is sensed 

by connecting the structure to a pull-up resistor connected to VDD; then, the voltage above 

the output neuron follows 

 𝑉𝑁 =
𝑅𝑀𝑇𝐽

𝑅𝑀𝑇𝐽+𝑅𝑃𝑢𝑙𝑙−𝑢𝑝
𝑉𝐷𝐷 ,  (34) 

where RPull-up is the resistance of the pull-up resistor, implemented with an MTJ with two 

fixed magnetic layers. The voltage, 𝑉𝑁, is amplified by a PMOS transistor, forming the 

axon, where the neuron’s output can be transferred to other neurons. 
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6.2.2 The Transient Response of the Neuron 

The transient response of the magnetization is shown in Figure 63 for a neuron with 

three inputs. In the first phase of device operation, VPIEZO is pulsed high for a duration of 

1 ns, rotating �̂�𝑜𝑢𝑡  to the +y or the -y direction. When VPIEZO turns off, �̂�𝑜𝑢𝑡  will be 

placed at the saddle-point of the energy profile. In the second phase of operation, 10x 

shorter than the first phase, the input voltages are pulsed for 0.1 ns, applying an STT that 

tips �̂�𝑜𝑢𝑡 toward +x or -x. The delay of the final switching is inversely proportional to the 

magnitude of the net spin current, 𝐼𝑠,𝑜𝑢𝑡. Compared to an STT-only realignment, this 

magnetostriction-assisted re-alignment of �̂�𝑜𝑢𝑡  onto the axis requires two orders of 

magnitude lower energy dissipation. 
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Figure 63: Transient response of the MA-ASL device. In the first phase of operation, 

𝐕𝐏𝐈𝐄𝐙𝐎 turns on for 1 ns as shown in the first graph. The second graph illustrates the 

second phase of operation, in which STT is applied to the output magnet through the 

injected net spin current (in blue) from three input magnets (shown with dotted lines), 

applied after 𝐕𝐏𝐈𝐄𝐙𝐎 turns off. The third graph shows the magnetization of the output 

magnet (x, y, and z axes shown in blue, red, and green, respectively) and how it is 

affected by 𝐕𝐏𝐈𝐄𝐙𝐎 and the spin currents [166]. 

 

6.2.3 Integration into Neural Network 

To connect the proposed device into a neural network with machine learning 

capabilities, we must first show how it mimics a neuron. In Figure 62, the axon of the 

neuron uses the voltage from the output MTJ as the gate voltage for a PMOS transistor, 

creating a charge current output. For the synapses, additional circuitry would be required 

to correctly weight the input current. One proposed method is with a memristive crossbar 

network, as shown in Figure 64. This structure places memristors between input and output 

lines to weight the charge current being passed among neurons [167]. In this setup, each 

output from the previous layer of neurons connects as an input to the crossbar network, 

which applies synaptic weights and outputs to the next layer of neurons.  



 117 

 

Figure 64: Memristive cross-bar network. The cross-bar array sums together the 

input currents, abbreviating the number of magnets needed for the output neurons 

[166]. 

 

6.3 Benchmarking Against Competing Technologies 

As Figure 63 illustrates, the delay of the MA-ASL neuron is about 1.1 ns, slightly larger 

than that of the spintronic neuron presented in [162], which claims 1 ns. However, Table 5 

demonstrates that the MA-ASL neuron demonstrates 70% improvement in terms of energy 

over the spintronic neuron [50]; the spintronic neuron uses STT to reorient magnets, while 

the MA-ASL neuron utilizes a combination of STT and magnetostrictive switching, which 

results in lower overall energy dissipation. When compared with both analog and digital 

CMOS neurons, the MA-ASL neuron has advantages in terms of energy consumption and 

overall chip area. These advantages are due to a more efficient implementation of a 

spintronic neuron that requires a lower device count. CMOS neurons require shift registers, 
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sense amplifiers, DRAM, and SRAM, which all require large numbers of transistors [159], 

whereas spintronic neurons require one MTJ and one magnet for each input, using two 

orders of magnitude less area than CMOS [112] and three orders of magnitude less energy. 

These improvements in area and energy consumption enable the proposed device to excel 

in mimicking a neural network, providing competition to CMOS and other spintronic 

neural networks in Boolean and non-Boolean computations. 

Table 5: Performance Comparison of MA-ASL Neuron against its CMOS and 

Spintronic Counterparts [166]. 

Neuron 

Device 

Digital 

CMOS 

[169]  

Analog 

CMOS 

[170] 

Spintronic 

[112] 

MA-ASL 

Neuron  

Delay 10 ns 10 ns 1 ns 1.1 ns 

Energy 832.6 fJ 700 fJ 0.81 fJ 0.25J 

 

The efficiency of the proposed neuron in learning tasks can be tested through network-

scale simulations. Moreover, beyond characterizing the transient response of a single MA-

ASL neuron, a neural network architecture of multiple MA-ASL neurons must be 

investigated further. A prime candidate for a neural network implementation is a 

memristive crossbar network due to the inherent learning capabilities of memristors and 

the lower device count for the structure, because of elimination of circuitry required for 

backpropagation [167]. As a result, area and power consumption for a neural network will 

be reduced. The research on MA-ASL neural network topologies may lead to the 
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implementation of network hierarchies usable for processor design or convolutional 

networks for deep learning [168], [169]. 

6.4 Conclusions 

We proposed a spintronic neuron based on the MA-ASL device and the MTJ. The 

performance of the neuron is benchmarked against its CMOS and spintronic counterparts 

in terms of area, delay, and energy dissipation. The MA-ASL neuron operates with less 

than half the energy compared to its spintronic counterparts by employing magnetostrictive 

switching along with STT switching. Magnetostrictive switching is expected to further 

enhance the robustness of the operation of neuron to thermal noise as well. The operation 

of the device was simulated using SPICE models and the physics behind the operation of 

the device is well understood. 
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VII. MAGNETOSTRICTION-ASSISTED SPIN-ORBIT DEVICE 

7.1 Spin-Orbit Interactions 

7.1.1 Motivations 

 As discussed in the previous chapters, various Boolean and non-Boolean ASL 

devices and circuits are proposed. These devices compared to their CMOS counterparts, 

suffer from the higher energy dissipation of switching, due to the inefficiency of spin-

transfer torque mechanism in magnetization reversal. To overcome this challenge, 

magnetostrictive switching was incorporated into the switching mechanism so that the role 

of STT was limited to the second half of switching  [143]. Thus, the energy dissipation and 

the delay of a 32-bit MA-ASL ALU compared to those of a 32-bit ASL ALU, demonstrated 

27× and 21× improvements, respectively. However, compared to a 32-bit CMOS ALU, 

the 32-bit MA-ASL ALU is two orders of magnitude less energy efficient and slower. 

Thus, energy-efficient magnetization switching remains a challenge for all-spin Boolean 

logic devices that work based on STT. Compared to STT, Spin-Hall effect (SHE) is a more 

efficient switching mechanism for magnetization reversal. Moreover, SHE is utilized in 

implementing spintronic devices such as the concatenable spin logic (CSL) device [69]. 

However, the CSL device compared to ASL has not made significant improvements in 

terms of energy dissipation and delay, due to the inefficient reading mechanism, which 

requires spin to charge transduction.  As discussed in Section I, the transduction of charge 

current to spin current and vice versa happens in both magnetic and non-magnetic 

materials. In magnetic conductors, the generation of spin polarized current is due to the 

exchange interaction between conduction electrons and local spins. In an all-spin logic, the 

charge current is converted to spin current using a magnetic layer. In non-magnetic 

materials, spin current generation is feasible due to spin-orbit interactions and is utilized in 
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the implementation of spin-orbitronic devices [171], [172]. In a CSL device, the write 

mechanism, which requires charge to spin transduction, is due to the spin-orbit interactions 

at the interface of a magnetic layer and a heavy metallic layer. Spin-orbit interactions are 

widely studied [58], [173]–[178]; these interaction, due to the interaction of the spin 

angular momentum and the orbital angular momentum of electrons, are very strong in 

heavy metallic elements, such as W and Pt [175]. The spin magnetic moment, 𝜇𝑠, and the 

orbital magnetic moment, 𝜇𝐿, are described by 

 𝜇𝑆 = −
𝑔𝑆𝜇𝐵

ℏ
𝑆,  (35) 

 𝜇𝐿 = −
𝑔𝐿𝜇𝐵

ℏ
𝐿,   (36) 

in which 𝜇𝐵, 𝑔𝑆, 𝑔𝐿, 𝑆, and 𝐿 represent the Bohr magneton, the spin g-factor, the orbital g-

factor, the spin magnetic moment, and the orbital magnetic moment. 

 

Figure 65: Spin-orbit interactions are very strong in heavy metallic elements [179]. 
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7.1.2 Rashba Effect 

 Spin-orbit interactions exist in bulk materials, 2D materials, and topological 

insulators. Rashba effect is a type of these interactions due to the spin-orbit coupling (SOC) 

on the 2D electron gas (2DEG), which exists at the surfaces, interfaces, and in 

semiconductor wells. This interaction is explained using the following Hamiltonian, 𝐻𝑅, 

 𝐻𝑅 = 𝛼𝑅(𝑘 × �̂�). 𝜎 ,  (37) 

 

Figure 66: A Rashba interface comprised of a hybrid NiFe/Ag/Bi structure [180]. 

 

which relates the spin Pauli matrices vector, 𝜎, and the momentum, 𝑘. In this equation, �̂� 

is the unit vector, normal to the interface as shown in Figure 66, and 𝛼𝑅  represents the 

Rashba coefficient, 

 𝛼𝑅 =
(𝑘𝐹+−𝐾𝐹− )ℏ2

2𝑚
,  (38) 

, where 𝐾𝐹− and 𝐾𝐹+ are the Fermi vectors of the two spin-split bands. By using a simple 

two Fermi contours model in the Rashba electron gas, the density of spin polarization along 
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the y-direction and the charge current density along the x-direction are related as [30], 

[175], [176], [181] 

 𝛿𝑠𝑦± = ±
𝑚

2𝑒ℏ𝑘𝐹±
𝑗𝑥𝑐±.  (39) 

Thus, the charge current density in a 2D Rashba electron gas, 𝑗𝑐𝑥, 

 𝑗𝐶𝑥 =
𝑒𝛼𝑅

ℏ
〈𝛿𝑠〉𝑦 =

𝛼𝑅𝜏𝑆

ℏ
𝑗𝑠𝑦 = 𝜆𝐼𝑅𝐸𝐸𝑗𝑠𝑦,  (40) 

in which 𝜏𝑆 is the spin relaxation time, 

 𝜏𝑆 =
〈𝛿𝑠〉

𝑗𝐶𝑥
,  (41) 

and the efficiency of charge to spin conversion is represented by 𝜆𝐼𝑅𝐸𝐸. Inverse Rashba 

Edelstein Effect (IREE) is the generation of a charge current that is due to a nonzero spin 

density induced by the spin injection and is carried by the interfacial quantum states of 

materials [175]. Using (40), the net generated charge current, 

 𝐼𝐶 =
𝜆𝐼𝑅𝐸𝐸

𝑤
(�̂� × 𝐼𝑠),  (42) 

where 𝑤 represents the width of the magnet. The generated charge current is larger for 

materials with higher spin-orbit coupling. Materials with high spin-orbit coupling 

coefficients include heavy metallic elements (Bi/Ag, Pt, W) [175], [178], [182], topological 

materials (Bi2Se3, ZrTe5, Bi-Bi2Se3) [177], [183], [184], and 2D materials (MoS2, MX2) 

[185], [186]. In bulk heavy metallic elements, instead of Rashba and IREE effects, spin-

Hall effect (SHE) and inverse spin-hall effect (ISHE) dominate the spin-orbit interactions, 

explained in the next subsection using an example. 
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7.1.3 Spin-Hall Effect 

 Spin-Hall effect describes the conversion of charge current flowing through a non-

magnetic bulk material into spin accumulation and transverse spin current on its surface. 

As an example, consider a hybrid structure of a magnet on top of a heavy metallic element 

such as Pt. By passing a current through the Pt layer underneath the magnet, an effective 

spin current is induced proportional to the magnet length to the thickness of the Pt layer. 

The ratio of the spin current to the electrical current can be analytically derived as [187] 

 𝛽 =
𝐼𝑆

𝐼𝐶
= 𝜃𝑆𝐻

𝐿𝐹𝑀

𝑡
[1 − 𝑠𝑒𝑐ℎ (

𝑡

𝜆
)],  (43) 

in which 𝐼𝑆, 𝐼𝐶 , 𝜃𝑆𝐻 , 𝐿𝐹𝑀 , 𝑡, and 𝜆 represent the spin current, the charge current, the spin-

Hall angle, the length of the magnet, the thickness of the Pt wire, and the spin-relaxation 

length of the heavy metal, respectively. The charge to spin current conversion factor, 𝛽, 

can be larger than one, which explains why using SHE will be more energy efficient than 

STT in spintronic devices.  

 

Figure 67: Spin-Hall effect in a hybrid heavy metallic/magnetic structure [180]. 
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 In the same structure, the conversion of spin current into charge current can be 

explained using ISHE. In this case, the spin to charge conversion efficiency in the metallic 

layer can be derived as [30] 

 𝜂 =
𝛩𝑆𝐻𝐸𝜆𝑓

𝑤
𝑡𝑎𝑛ℎ (

𝑡

2𝜆𝑠𝑓
) ,  (44) 

in which 𝜂 represents the efficiency of the ISHE mechanism. Thus, the net generated charge 

current, 

 𝐼𝐶 =
1

𝑤
𝛩𝑆𝐻𝐸𝜆𝑠𝑓 𝑡𝑎𝑛ℎ (

𝑡

2𝜆𝑠𝑓
) (�̂� × 𝐼𝑠),  

(45) 

where, 𝜆𝑠𝑓 is the bulk diffusion length. In Figure 68, MATLAB simulations demonstrate 

the dependency of 𝛽 and 𝜂 on the thickness of the heavy metallic layer. In the limit that 

𝑡 << 𝜆𝑠𝑓, one can write 

 

Figure 68: MATLAB simulations are done to measure the efficiency of the spin to 

charge and charge to spin conversion in the device. Based on the results, maximum 

spin to charge conversion is achieved by maximizing the thickness of the metallic 

layer, while the maximum charge to spin conversion efficiency is achieved by 

minimizing the thickness of the metallic layer. 
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 𝐼𝐶 =
1

2𝑤
Θ𝑆𝐻𝐸𝑡𝐼𝑠,  (46) 

that shows the dependency between generated charge current and the applied spin current. 

Moreover, in the limit 𝑡 >> 𝜆𝑠𝑓, one can write 

 𝐼𝐶 =
1

𝑤
Θ𝑆𝐻𝐸𝜆𝑠𝑓,  (47) 

which shows that by increasing the thickness, the generated charge current will reach a 

saturation value. The spin current to charge current conversion in hybrid structures of 

heavy metallic and magnets is primarily due to ISHE mechanism. To increase the spin 

current to charge current conversion efficiency, a spin-injection layer (SIL) of Ag can be 

added to the structure as shown in Figure 66. In this case, due to interfacial states, IREE 

will contribute to the spin current to charge current generation as well. In this case, the net 

charge to spin conversion can be derived by combining charge current generations coming 

from both ISHE and IREE; thus, the total generated charge current is derived as [30] 

  𝐼𝑐⃗⃗ =
1

𝑤
(𝜆𝐼𝑅𝐸𝐸 + 𝛩𝑆𝐻𝐸𝜆𝑠𝑓 𝑡𝑎𝑛ℎ (

𝑡

2𝜆𝑠𝑓
)) (�̂� × 𝐼𝑠 ) =

1

𝑤
𝜆′𝐼𝑆𝑂𝐶(�̂� × 𝐼𝑠 ) ,  (48) 

in which 𝜆𝐼𝑆𝑂𝐶
′  shows the net efficiency of the spin to charge conversion using both IREE 

and ISHE mechanisms, 

 𝜆𝐼𝑆𝑂𝐶
′ = 𝜆𝐼𝑅𝐸𝐸 + 𝛩𝑆𝐻𝐸𝜆𝑠𝑓 𝑡𝑎𝑛ℎ (

𝑡

2𝜆𝑠𝑓
).  

(49) 

Thus, in the limit 𝑡 >> 𝜆𝑠𝑓 , 

 𝜆𝐼𝑆𝑂𝐶
′ = 𝜆𝐼𝑅𝐸𝐸 + 𝛩𝑆𝐻𝐸𝜆𝑠𝑓.  (50) 
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However, we expect one of the two mechanisms to be dominant for each material because 

of the difference in the bulk and surface states. In this case, the efficiency of ISHE and 

IREE for spin current to charge current conversion is compared by comparing 𝜆𝐼𝑅𝐸𝐸 and 

𝛩𝑆𝐻𝐸𝜆𝑠𝑓. In Table 6, these values are shown for various materials with strong spin-orbit 

coupling, showing that materials relying on IREE compared to those relying on ISHE are 

more efficient in spin current to charge conversion, making them more interesting for logic 

device applications. 

 

Table 6: The spin to charge conversion efficiency of various materials are compared 

by comparing 𝝀𝑰𝑹𝑬𝑬 and 𝚯𝑺𝑯𝑬𝒍𝒔𝒇 . 

Material 𝝀𝑰𝑹𝑬𝑬(nm) Material 𝚯𝑺𝑯𝑬𝒍𝒔𝒇(nm) 

NiFe/LAO/STO 6.4 Bi/Ag 0.1-0.4 

𝜶𝑺𝒏 2.1 Pt 0.2 

  Ta 0.3 

  W 0.43 

 

7.2 Magnetostriction Assisted Spin-Orbit (MASO) Logic Device Proposal 

7.2.1 Device Proposal 
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Researchers have proposed various spintronic logic devices, such as the all spin 

logic (ASL) device [27], the composite-input magnetoelectric-based logic technology 

(COMET) [28], the domain wall magnetic logic (mLogic) [29], the magnetoelectric spin-

orbit device [30], and the magnetoelectric magnetic tunnel junction (MEMTJ) [31]. Some 

of these devices such as ASL employ STT for magnetization reversal, while some of these 

devices such as CSL employ SHE for magnetization reversal. However, these two devices 

are not energy efficient due to their switching mechanism.  Recently, by combining spin-

orbit coupling and magnetoelectric switching, the magnetoelectric spin-orbit (MESO) logic 

is proposed, which compared to the ASL and the CSL, demonstrates higher energy 

efficiency [30]. However, because of the large capacitance and resistance of the device, it 

cannot be used for interconnects longer than 2 𝜇𝑚. Moreover, the delay of the device is 

always longer than 50 ps due to the switching mechanism of the device. In this section, by 

combining SHE, ISHE, IREE, and magnetostriction, the magnetostriction-assisted spin-

orbit logic (MASOL) device is proposed. Because of the higher energy efficiency of spin-

orbit torque switching compared to that of STT switching, the proposed structure is 

expected to outperform previous spintronic devices in terms of delay and energy 

dissipation. The proposed device is shown in Figure 69. The device is comprised of a 

hybrid structure of piezoelectric and magnetic layers in contact with two heavy metallic 

layers or topological insulator layers.  
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Figure 69: Schematics of proposed magnetostriction-assisted spin-orbit (MASO) logic 

device. The read and write operations are done in three phases. To write data into the 

magnet, first, magnetostrictive switching is employed to rotate the magnetization by 

𝟗𝟎𝑶. Second, SHE is applied to perform the second 𝟗𝟎𝑶 of switching. In the third 

phase of operation, the stored information is converted into the direction of the output 

charge current that can drive the next stage.  

 

 The read and write operations of the device consist of three phases. To write into 

magnets, first, a voltage 𝑉𝑃𝐼𝐸𝑍𝑂 is applied to the magnet rotating its easy axis and 

magnetization by 90𝑂; the operation of this phase of MASO device is like that of an MA-

ASL device. Second, 𝑉𝑃𝑖𝑒𝑧𝑜 is turned off so that the magnet will be placed at the saddle-

point of its energy profile. Unlike an MA-ASL device, SHE induced spin torque which is 

more energy efficient than STT, is applied to the magnet through applying the input charge 

current, 𝐼𝐶,𝐼𝑁, to the magnet to accomplish a deterministic switching. The input charge 

current, 𝐼𝐶,𝐼𝑁, must pass through a channel layer made of materials with strong spin-orbit 

coupling, such as 2D materials (MoS2 and graphene), topological insulators, or heavy 

metallic elements such as Pt and W, used in the common fabrication of CMOS devices. 

Using each of these materials offers advantages and challenges that are discussed shortly 

in Subsection 7.3. To read magnets, the current pulse, IPulse, passes through the magnet, as 
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shown by the green arrow in Figure 69, which becomes spin polarized. By applying a spin-

polarized current to the spin injection layer (Ag, Cu) and the channel, a heavy metallic 

layer, a transverse charge current IC,Out is generated due to the ISHE and/or the IREE. The 

direction of the charge current is determined using (48), i.e., the direction of �̂� × 𝐼𝑠, in 

which the direction of �̂� is determined according to the orientation of the magnet, and the 

direction of 𝐼𝑠 is determined according to that of the spin current. For this device, the 

direction of 𝐼𝑠 is fixed. Thus, the direction of the charge current, either outward or inward 

the magnet, is determined according to the orientation of the magnet, either in the +x-

direction or the -x-direction, respectively. Here, we assume that Θ𝑆𝐻𝐸  is a positive number; 

however, Θ𝑆𝐻𝐸  is negative for some materials. In these cases, the direction of the generated 

charge current is reversed. 

 Using this structure, the direction of the magnet is converted to the direction of the 

charge current. The same structure can be implemented using topological insulators or 2D 

materials, as well. In these cases, the spin injection layer is removed; thus, the topological 

insulator layer will be in contact with the magnetic layer. To pass information to another 

magnet in a chain, the generated charge current is applied to the next magnet, in which 

rotates that magnet using SHE-induced torque.   
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Figure 70: Two driver circuits are proposed for MASO repeaters in (a) and (b), and 

their corresponding circuit models are represented in (c) and (d). 

 

7.2.2 The Modelling of the MASO Device 

To analyze the operation of the device, circuit models are developed, shown in 

Figure 70. The figure shows an MASO inverter, implemented using two driver circuit 

schemes, as shown in Figure 70a and Figure 70b. Each of these implementations offer their 

own advantages and disadvantages. For example, the driver circuit shown in Figure 70b 

requires one driver transistor, while the one shown in Figure 70a requires three transistors. 

However, unlike the driver circuit shown in Figure 70a, the one shown in Figure 70b 

requires an additional negative supply voltage VFM. The SPICE models of these two 

configurations are shown in Figure 70c and Figure 70d. The magnetic-non-magnetic 

interface is modelled using the circuit model proposed in [78], labelled GFM−NM (m̂). Like 

the ground contact model of the spin current for the ASL device, that for the MASO is 
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modelled using the channel model proposed in [78], labelled GNM (m̂). The ISHE and the 

IREE are modelled using a dependent charge current source with the value demonstrated 

in (49), 𝐼 𝐼𝑆𝑂𝐶 =
1

𝑤
 𝜆𝐼𝑆𝑂𝐶

′ (�̂� × 𝐼 𝑆). �̂�, in parallel with a resistor 𝑅𝐼𝑅𝐸𝐸 modelling the 

resistance of the topological insulator layer [30]. In these figures, the charge current 

transport between points a and b is modelled using a resistor 𝑅𝐼𝐶. Moreover, the resistances 

of the layer of topological insulator/heavy metal and that of the magnetic layer (and the 

spin injection layer) are modelled using resistors 𝑅𝑇𝐼/𝐻𝑀 and 𝑅𝐹𝑀/𝑆𝐼𝐿, respectively. The 

effective spin current applied to the output magnet, 𝐼𝑆,   𝐹𝑀,   𝑂𝑈𝑇, is proportional to the 

current passing through the topological insulator layer below the output magnet, 𝐼𝐶,   𝑇𝐼,  

 𝐼𝑆,   𝐹𝑀,   𝑂𝑈𝑇 = 𝐼𝐶,   𝑇𝐼 × 𝜃𝑆𝐻
𝐿𝐹𝑀

𝑡
[1 − 𝑠𝑒𝑐ℎ (

𝑡

𝜆
)] = 𝐼𝐶,   𝑇𝐼 × 𝛽.  (51) 

Furthermore, driver circuits are also modelled using CMOS transistors. These circuits 

provide the required pulse current, which passes through the magnets and the supply 

voltage, 𝑉𝐹𝑀 , positive for the circuit shown in Figure 70a and negative for the one shown 

in Figure 70b. 
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Figure 71: Transient response of the MASO device. The orientations of the input and 

output magnets are shown in (a) and (b), respectively. The supply current is shown in 

(c), and the charge current generated beneath the magnetic layer is shown in (d). 

Some of the generated charge current passes through the TI layer below the output 

magnet as shown in (e), which applies an effective transverse spin current shown in 

(f) to the output magnet. 

 

7.2.3  The Transient Response of the MASO Device 

 Using the models described in the previous subsection, the operation of the device 

is simulated using SPICE and results are illustrated in Figure 71 and Figure 72. In this 

simulation, first, the input magnet, 𝑚𝐼𝑁, and the output magnet are assumed to be oriented 
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in the -x direction, as shown in Figure 71a and Figure 71b, respectively. In the first phase 

of operation, shaded by red colour in Figure 71, a voltage pulse 𝑉𝑃𝐼𝐸𝑍𝑂,2 is applied to the 

piezoelectric layer on top of the output magnet, rotating its easy axis and its magnetization 

by 90𝑜, shown in in Figure 71b; the voltage pulse is applied for 1 ns. By turning off 

𝑉𝑃𝐼𝐸𝑍𝑂,2, the output magnet will be placed at its saddle-point of energy profile and will be 

ready to switch to either the -x or the +x direction. To ensure the deterministic switching 

of the output magnet, an STT or spin-orbit torque (SOT) must be applied to the magnet. In 

an MA-ASL, an STT is applied to the magnet, but in an MASO, an SOT due to SHE is 

applied to the magnet. By using SOT instead STT, we expect this phase of operation of the 

MASO device compared to that of the MA-ASL device to be 𝛽 times more energy efficient.  

 

Figure 72: First, the orientation of Magnet 2, rotates by 900 from �⃗⃗⃗� 𝒊 to �⃗⃗⃗� 𝒎 using 

magnetostrictive switching; then, it reorients by 900 from �⃗⃗⃗� 𝒎 to �⃗⃗⃗� 𝒇 using SHE. 

 

 To generate SOT, a charge current pulse 𝐼𝐶,   𝐹𝑀,   𝐼𝑁 is applied to the input magnet, 

as shown in Figure 71c. The current becomes spin polarized after as it passes through the 
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magnet. The spin current must pass through the topological insulator layer, causing IREE; 

thus, a charge current IISOC is generated, shown in Figure 71d. The charge current will pass 

through the metallic interconnect, connecting the input and the output magnets. As the 

current reaches to the output magnet and the topological insulator layer above it, part of 

the current shunts to the ground through the magnet, and the rest of the current, 𝐼𝐶,   𝑇𝐼, 

passes through the topological insulator layer, as shown in Figure 71e. Because of spin-

orbit coupling at the topological insulator layer, an SOT is applied to the to the output 

magnet. The equivalent spin current applied to the output magnet, 𝐼𝑆,   𝐹𝑀,   𝑂𝑈𝑇, is shown in 

Figure 71f. If the applied spin current is strong enough, the output magnet deterministically 

switches, as shown in Figure 71b. As this figure shows, the output magnetization 

orientation will be the invert of the input magnetization orientation. Moreover, the 

magnitude of the applied torque to the magnet is dependent on the geometrical dimensions 

and the magnetic, piezoelectric, and topological insulator materials, used in the MASO 

device. These factors are investigated in the next section to optimize the performance of 

the device. 

 

7.3 Optimizing the Performance of the Device 

 To optimize the operation of the MASO device, the materials used in the device 

and their geometrical dimensions must be optimized for each of the three phases of the 

operation. The first phase of operation relies on magnetostrictive switching. The optimum 

performance is achieved, when the maximum strain transfer is transferred for a given 

𝑉𝑃𝐼𝐸𝑍𝑂 voltage; the transferred strain to the magnet is shown in Figure 73. Thus, the 

thickness of the heavy metallic (HM)/topological insulator (TI) layer must be minimized 

(or be removed) to increase the maximum strain, as demonstrated in Figure 58. Moreover, 

materials with the largest Young’s modulus Y must be used. However, the same HM/TI 
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layer is used for applying SOT to the device in the third phase of operation. Thus, the 

HM/TI layer cannot be removed. Moreover, in the search for the best HM/TI material, one 

needs to consider both 𝑌 and Θ𝑆𝐻𝐸  to guarantee the most efficient SOT switching. For 

example, the material parameters of Pt, Ta, and W are compared in Table 7; Pt and W are 

widely used in the fabrication of CMOS devices. Using Pt instead of W in a MASO device, 

results in 23% higher transferred strain to the magnetic layer, demonstrated in Figure 74, 

while it results in 77% lower SOT, due to the larger range of variation in Θ𝑆𝐻𝐸  parameter 

compared to magnetostriction-related parameters. Moreover, the energy dissipated in the 

third phase of operation is generally larger than that in the first phase of operation. Thus, 

in a MASO device, using W is preferred over using Pt. 

 

Figure 73: Transferred strain to the magnet is simulated using COMSOL, and the 

results are shown for the cross-section of the magnet. 
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Table 7: Comparison of the transferred strain to the magnet and spin-hall angle for 

Pt, Ta, and W. 

Materials Resistivity 

(𝝆) 

𝚯𝐒𝐇𝐄 

(to CoFeB) 

Gilbert 

Damping (𝜶) 

Generated 

Strain (ppm) 

Pt 24 𝜇𝛺. 𝑐𝑚 0.07 0.025 1595.6 

Ta 190 𝜇𝛺. 𝑐𝑚 -0.15 0.008 - 

W 200 𝜇𝛺. 𝑐𝑚 0.3 0.012 1297.4 

 

 

Figure 74: COMSOL simulations are done to measure the amount of the transferred 

strain for W as shown in (a) and Pt as shown in (b). 

 

To transfer the largest strain to the structure, the generated strain in the piezoelectric 

material must be maximized as well, which depends on the geometrical dimensions and 

material parameters of the piezoelectric layer. In Section 5.5, the impact of geometrical 

dimensions on the generated strain for an MA-ASL device is investigated. In this section, 

the magnetic materials are studied only for their magnetostrictive properties. A 
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comprehensive list of materials and their properties is shown in Table 8. In the first phase 

of operation, the anisotropy field, ∝
2𝐾

𝜇0𝑀𝑆
∝

𝜆𝑌

𝑀𝑆
, must exceed the demagnetization field, ∝

𝑀𝑆, to rotate the easy axis from the x direction to the y direction. Thus, materials with the 

lowest 
𝑀𝑆

2

𝜆𝑌
 such as Terfenol-D offer the largest magnetostrictive properties. 

 

Table 8: Resistivity and 𝚯𝑺𝑯𝑬 for various heavy metallic elements, topological 

insulators(TIs), magnets, and nonmagnetic metals [64], [142], [144]–[146], [163], 

[182], [183], [188]–[220]. 

Materials Type of Material Resistivity (𝛒) 

(𝛍𝛀. 𝐜𝐦) 

𝚯𝐒𝐇𝐄 (at room 

temperature) 

𝐌𝐒
𝟐

𝛌𝐘
 (1e3) 

Pt Heavy Metal 24 0.07-0.08 - 

β-W Heavy Metal 210 0.4 - 

W Heavy Metal 200 0.3 - 

β-Ta Heavy Metal 190 -0.15 - 

Ta Heavy Metal 190 -0.15 - 

Bi2Se3 TI 1750 2-3.5 - 

BixSe1−x TI 12800 18.8 - 

Bi0.9Sb0.1 TI 400 52 - 

Ni Magnet 6.9 - 34.3 



 139 

CoFe2O4 Magnet 1.00E+15 - 2.5 

CoFe Magnet 30 - 16 

CoFeB Magnet 165 - 208 

Co Magnet 6.2 - 469 

Fe3O4 Magnet 4000 - 289 

Terfenol-D Magnet 60 - 5 

Galfenol Magnet 85 - 53 

Ag SIL, Interconnect 1.6 - - 

Cu SIL, Interconnect 1.7 - - 

Au SIL, Interconnect 2.2 - - 

Al Interconnect 2.8 -- - 

 

Optimizing the second and the third phase of operation, requires choosing materials with 

the largest spin-orbit coupling; thus, materials with largest Θ𝑆𝐻𝐸  are preferred. Hence, 

considering the very large Θ𝑆𝐻𝐸  of topological insulators, these materials are promising 

candidates to be used in MASO device. However, most of these materials exhibit poor 

conductance, as demonstrated in Table 8. Thus, they lead to large energy dissipation 

because of shunting a large current through the output magnet. This issue prohibits using 

them in the design of MASO device. However, researchers have recently studied a BiSb 
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topological insulator [193], which exhibits a very large Θ𝑆𝐻𝐸  of 52 at the room temperature 

and a low resistivity of 400 𝜇Ω. 𝑐𝑚, introducing the material as an ideal candidate to be 

used in the MASO device. Furthermore, optimizing the second and the third phases of 

operation requires a comprehensive study, not presented in this section. However, we 

briefly address a tradeoff issue relate in optimizing these two phases, related to the 

thickness of the HM/TI layer. From (45) and (48), the thickness of the HM/TI layer must 

be maximized to optimize the read operation, while that must be minimized to optimize 

the write operation. To solve this problem, we preferred to use separate HM/TI layers for 

read and write operations to maximize the efficiency of both operations in the MASO 

device. 

7.4 Performance Analysis of the Device 

7.4.1 Using the Device as an Interconnect 

Like the ASL device, the MASO device can be used as an interconnect in 

transferring information. The delay of an MASO interconnect versos length is plotted in 

Figure 75. The delay of a 10 𝜇𝑚 long interconnect compared to that of a 40 nm long 

interconnect, only increases by 30%. Thus, the MASO device unlike the ASL and the 

MESO device, is very efficient in transferring signals in long ranges and does not require 

repeaters to transfer signals in long-ranges. Unlike the ASL device, the MASO device uses 

charge current to transfer data; thus, it does not suffer from the loss of data because of spin 

relaxation. Compared to the MESO device, the MASO device has the advantage of using 

current instead of voltage in transferring signals. Moreover, the MASO device has lower 
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capacitance and resistance compared to the MESO device. Unlike the MASO device, the 

MESO device requires larger resistance values to achieve lowest energy dissipation [221]. 

 

Figure 75: Switching delay vs interconnect length. The increase in delay with length 

compared to that of an ASL is significantly smaller. Thus, MASO circuits do not 

require repeaters even for interconnects as long as 10 𝝁𝒎. 

 

7.4.2 Benchmarking the Performance of the MASO Device Against CMOS and 

Spintronic Alternatives 

The error rate of the MASO device is compared to that of the ASL device, the MA-

ASL device, and STT-MRAM in Figure 76. All these devices use current to write into 

magnets; however, the MASO device unlike other devices uses SOT instead of STT to 

write into magnets. Among all the devices, the MASO device uses the smallest current 

pulse width to reach a certain error rate. Moreover, the MASO device uses lower current 

magnitude for switching as well. For example, the switching current of the MASO device, 
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which ranges from 1 𝜇𝐴 to 30 𝜇𝐴, is two orders of magnitude smaller than that of the ASL 

device, which ranges from 200 𝜇𝐴 to 2 𝑚𝐴. Thus, compared to the ASL device, the MASO 

device requires significantly lower energy for switching. Moreover, unlike the ASL device, 

multiple MASO devices can share driver transistors due to the small magnitude of the 

switching current, leading to further reduction in the switching energy.  

 

Figure 76: Write error statistics of the MASO device vs. the ASL device, the MA-ASL 

device, and the STT-MRAM [30], [72], [130], [222]. 

 

 The energy dissipation and the delay of a 32-bit ALU implemented by an MASO 

device is compared to that implemented by various CMOS, TFET, and spintronic devices 

[30], [72], [130], [222]. The MASO ALU compared to spintronic ALUs, operates faster 

and dissipates lower energy. Compared to the MA-ASL ALU, the MASO ALU is 2.2x 

faster and 250x more energy efficient. Compared to the ASL ALU, the MASO ALU is 46x 

faster and three orders of magnitude more energy efficient. Unlike the energy-delay 
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product (EDP) of spintronic ALUs, that of the MASO ALU is very close to that of CMOS 

and TFET ALUs. Thus, with advances in the magnetic and piezoelectric materials, the 

MASO device may potentially compete with CMOS in Boolean logic applications. 

 

Figure 77: Delay and energy comparison of the MASO device with various spintronic, 

CMOS, and TFET devices. Compared to MA-ASL, the MASO device operates with 

2.2× and 250× lower delay and energy dissipation, respectively. Compared to CMOS, 

device operates with lower delay-energy product. 

 

7.5 Conclusions 

In this chapter, a novel spintronic device is proposed that uses SHE mechanism instead 

of STT to enhance the energy efficiency of the device in writing data into magnets. 
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Moreover, to further enhance the energy efficiency of the device, the strain-mediated 

switching of magnets to the saddle-point of energy profile is employed. Furthermore, 

unlike the ASL device, the proposed MASO device transfers data from the input magnet 

to the output magnet using charge current instead of spin current; hence, signals can be 

transferred in long ranges without using repeaters. The device is highly energy efficient 

considering the write mechanism (that operates via magnetostrictive switching and SOT 

switching) and the read mechanism (that operates using ISHE and IREE mechanisms, 

experimentally demonstrated mechanisms). The proposed device is expected to be more 

energy efficient compared to its CMOS and spintronic counterparts for Boolean logic 

applications. 
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VIII. CONCLUSION AND OUTLOOK 

This chapter concludes the dissertation by reviewing the major contributions of the 

work and providing insights and recommendations about possible extensions of the work 

in future. 

8.1 Conclusion 

The objective of this research is studying the modeling and the designing of fast and 

energy-efficient spintronic and magnetic devices. Spintronic devices are one of the most 

widely studied beyond-CMOS devices. Unlike CMOS devices, spintronic devices use 

electronic spin to represent binary information. Furthermore, the information is stored as 

the orientation of magnets. Unlike charge-based switching mechanism of CMOS 

transistors, torque must be applied to magnets to switch their stable state. Moreover, some 

spintronic devices employ spin current to transfer information from one magnet to another 

magnet. Thus, researchers require to develop models based on the physical formalisms 

governing these devices to analyze the operation and the performance of these devices. 

Considering the wide use of circuit models by electrical engineers, this research focuses on 

developing circuit models for spintronic devices. Moreover, using developed circuit 

models, engineers will be able to design various spintronic and hybrid CMOS-spintronic 

devices and circuits.  

To benchmark the performance of large spintronic circuits, investigate their advantages 

and challenges, and design them for various application, simple spintronic devices that can 

act as a building block for larger circuits and systems must be studied first. To this end, the 
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all-spin logic (ASL) device, a basic spintronic device, which operates at low voltages and 

offers non-volatile memory, is studied in this work. The ASL device is capable of offering 

various applications such as Boolean and non-Boolean logic computation, interconnection, 

and neural network implementation. Furthermore, the device acts as an interconnect in 

transferring signals. Moreover, the operation of the device is based on converting an 

electrical current into spin current, making the device a potential candidate in the design of 

CMOS-spintronic interface circuits. In addition, the simple structure of the device can be 

modified to enhance switching speed and energy efficiency. For example, higher energy 

efficiencies can be achieved by augmenting or replacing spin-transfer torque (STT) with 

strain-mediated and spin-orbit torque (SOT) switching. Thus, to accomplish the research 

goals, following contributions are identified: 

7. Studying and designing circuit models for common materials and physical 

formalisms used in spintronic and magnetic devices 

8. Analyzing and benchmarking the performance of the all-spin logic device for 

interconnection and Boolean logic applications. 

9. Designing pattern/image recognition circuits using all-spin logic device. 

10. Designing CMOS-spintronic interface circuits and long-range interconnects 

11. Employing magnetostrictive switching to design hybrid magnetic-piezoelectric 

logic and neuron devices 

12. Employing spin-orbit torque switching to design novel energy-efficient spintronic 

devices  

In conclusion, 1) the developed circuit models of this work are used to design and 

benchmark various spintronic devices that offer a wide range of applications such as 
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interconnection, logic gates, image/pattern recognition systems, neuron devices, and 

CMOS-spintronic interface circuits and utilize STT, SOT, and magnetostrictive switching 

mechanisms, spin injection/extraction at magnet-non-magnetic metal, tunnel junction, and 

magnet-heavy metal interfaces, and transfer electrical and spintronic signals in metals and 

topological insulators for their operation. 

2) Analyzing the performance of ASL shows that size effects and dimensional scaling 

significantly impact the performance of an ASL device. Thus, by using the device as a 

spintronic interconnect, it will suffer from size effects even more seriously as compared to 

its electrical counterparts, due to the exponential drop in spin signal as the interconnect 

becomes longer than the spin relaxation length. Thus, improvements in interconnect 

technology will have an even bigger impact on ASL interconnects. The applications of all-

spin logic device are studied using two examples. First, the ASL full-adder, an example of 

Boolean logic devices, is studied. Results demonstrate that the ASL device cannot compete 

against CMOS devices in terms of delay and energy efficiency. Moreover, an ASL coupled 

oscillator is proposed exhibiting high tuning range and low-voltage operation. ASL 

coupled oscillators are promising for coupled-oscillator-based image and pattern 

recognition systems.  

3) An ASL image recognition circuit has been proposed that performs all the phases 

of a non-Boolean pattern recognition for binary images. The learning phase operation is 

performed incorporating no additional memory devices leading to lower energy 

dissipations. Furthermore, the proposed circuit compared to its CMOS counterparts, 

operates with lower computational complexity because of taking advantage of ASL 

majority gates in its design. Moreover, the proposed circuit recognizes various sizes of 
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binary image patterns faster than existing CMOS counterparts, while consuming lower 

energy and operating at voltages as low as 5 mV.  

4) Two simple and efficient CMOS-spintronic transducer circuits have been 

proposed to act as interface circuits that convert back and forth spin signals and electrical 

signals. The proposed circuits have potential applications in hybrid CMOS-spintronic logic 

and memory read/write circuits that require the efficient transmission of spin signals in 

both short and long ranges. To overcome the exponential decay of the amplitudes of spin 

signals in long interconnects, ASL repeaters are studied. Using repeaters is shown to be an 

inefficient method of transmitting spin signals. To solve this problem, a new scheme for 

long-range spintronic interconnects is proposed that uses the proposed transducer circuits. 

The proposed spintronic interconnect compared to ASL repeaters, transfers signals faster 

and dissipates lower energy per bit per unit length for interconnects longer than 1.6 μm. 

5) By employing magnetostriction and STT, a novel spintronic device has been 

proposed. The device, named the magnetostriction-assisted all-spin logic (MA-ASL) 

device, consists of a heterostructure of magnetic and piezoelectric layers. By performing 

benchmarking analysis on the device, the energy and the delay performance of a 32-bit 

MA-ASL ALU has been compared to those of the ASL ALU, showing 21x and 27x 

improvement, respectively. However, like the ASL device, the MA-ASL device cannot 

compete against CMOS devices in implementing Boolean functions. The applications of 

the MA-ASL device is further studied by designing and proposing an MA-ASL neuron. 

The structure relies on a MA-ASL majority gate and an MTJ for its operation. Compared 

to its CMOS and spintronic counterparts, the MA-ASL neuron excels in terms of area, 
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delay, and energy dissipation. Moreover, employing magnetostrictive switching further 

enhances the robustness of the operation of the proposed neuron to thermal noise. 

6) By employing SOT and magnetostrictive switching, a novel spintronic device has 

been proposed. Unlike the ASL and the MA-ASL devices, the proposed device, named the 

magnetostriction-assisted spin orbit (MASO) device, uses charge current instead of spin 

current to transfer data from the input magnet to the output magnet; hence, the device is 

promising for interconnect applications as signals can be transferred in long ranges without 

using repeaters. The write mechanism is operated via magnetostrictive switching and SOT 

switching, and the read mechanism is operated using ISHE and IREE mechanisms. Thus, 

the device is expected to be highly energy efficient. Compared to its CMOS and spintronic 

counterparts, the MASO device has demonstrated lower energy-delay product for 

implementation of a 32-bit ALU. 

The conducted research is instrumental in pointing out the advantages and challenges 

of spintronic devices in the implementation of logic devices, interconnects, interface 

circuits, neural networks, and image/pattern recognition circuits. 

8.2 Future Works 

8.2.1 Non-Boolean Logic Application of Spintronic Devices 

Due to the higher efficiency of the switching of CMOS transistors compared to that 

of magnets, CMOS devices generally outperform spintronic devices in implementing 

Boolean logic application. On the other hand, compared to CMOS devices, some spintronic 

devices such as the ASL device, the MA-ASL device, and the MASO device are more 
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efficient in the implementation of majority gates; thus, these devices can implement certain 

functionalities requiring lower device count. Because of this advantage, some spintronic 

devices excel in implementing non-Boolean logic applications such as cellular neural 

networks [32], as shown in Figure 78. Considering the energy efficiency of the devices 

investigated in this thesis in implementing majority gates, they are potential candidates to 

be studied for various applications such as cellular neural networks, coupled-oscillators, 

and image/pattern recognition circuits. Moreover, the applications of the proposed MA-

ASL neuron can be investigated for various machine learning and deep learning 

applications. 

 

Figure 78: Energy versus delay per memory association operation using CNN for a 

variety of charge- and spin-based devices, where the red star indicates the preferred 

corner [32]. 
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Figure 79: Bit-cell for STT-MRAM and SOT-MRAM [223]. 

 

8.2.2 Signal Transduction and Long-Range Interconnects 

Because of their non-volatility, magnetic and spintronic devices are widely studied 

to be implemented as memory cells, as shown in Figure 79. Thus, augmenting CMOS 

circuits using magnetic memories requires highly energy-efficient and fast interface 

circuits. In this work, circuits were proposed to efficiently convert magnetization 

orientation and spin signals into electrical signal and vice versa. In addition to spintronic-

CMOS signal transduction, other transductions such as phononic-spintronic and photonic-

spintronic transductions must be studied. By manipulating light propagation, photonic 

systems offer novel devices [224] such as invisibility cloaks [225], field concentrators 

[226], and perfect black hole absorbers [227]. However, designing spintronic-photonic 
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transducers will be challenging as the trajectory of light is not significantly affected in the 

presence of magnetic field. On the other hand, the design of phononic-spintronic 

transducers is expected to be easier as phononic systems utilize materials such as 

piezoelectric and magnetostrictive materials such as Ni that are widely used in the design 

of spintronic circuits. 

 Designing energy-efficient and fast interconnects is a bottleneck in the design of 

spintronic systems that remains to be further investigated by researchers. Researchers have 

mostly focused on using devices such as the ASL device and the ASL repeaters as 

interconnects, but some novel spintronic devices such as the MASO device might be 

promising candidates for spintronic interconnect design as they use electrical current 

instead of spin current to transfer signals. 

8.2.3 The MASO Device 

The MASO device, proposed in Section VII, is a highly energy-efficient and fast 

spintronic device. The proposed device is a promising candidate for logic applications as 

it reaches energy-delay product values close to the energy-delay product values of CMOS 

devices. Moreover, like other spintronic devices, the MASO device is expected to excel in 

non-Boolean logic applications. Further improvements in the design of various MASO-

based circuits and systems relies on the optimization of the performance of an MASO 

device. Thus, studies on the impact of geometrical dimensions and piezoelectric and 

magnetostrictive materials on the performance of the MASO is expected to lead to highly 

energy-efficient and fast spintronic circuits. In investigating the novel materials, more 

studies must be done on the impacts of strain and resistivity on the operation of the device. 
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Changing strain can significantly change the Rashba coefficient, 𝛼𝑅; thus, 𝜆𝐼𝑅𝐸𝐸 changes 

accordingly, which might lead to an increase (or decrease) in the efficiency of spin current 

to charge current conversion in the device. Furthermore, improvements in the resistivity of 

topological insulators leads to improvements in spin/current transport and transduction as 

resistivity is inversely proportional to the spin-relaxation time. 
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