37 research outputs found

    Mesenchymal Stem/Stromal Cells in Regenerative Medicine: Past, Present, and Future

    No full text
    The concept of Regenerative Medicine combined with Cell based Therapy and Tissue Engineering represents the fourth pillar of healthcare and provides a promising approach for the treatment of serious diseases. Recently, cell based therapies are focused on the use of mesenchymal stem/stromal cells (MSCs). Human MSCs, that represent a mesoderm derived population of progenitors, are easily expanded in culture. They are capable to differentiate into osteoblasts, chondrocytes, and adipocytes and exhibit the potential to repair or regenerate damaged tissues. The best characterized source of human MSCs to date is the bone marrow; recently, fetal sources, such as amniotic fluid, umbilical cord, amniotic membranes, or placenta, have also attracted increased attention. Thus, MSCs may represent a valuable tool for tissue repair and cell therapeutic applications. To this end, the main focus of this review is to summarize and evaluate the key characteristics, the sources, and the potential use of MSCs in therapeutic approaches and modalities. © Copyright 2017, Mary Ann Liebert, Inc. 2017

    Stem cells as potential targeted therapy for inflammatory bowel disease

    No full text
    The incidence and prevalence of inflammatory bowel disease is increasing in Western countries. Current therapies, ranging from antiinflammatory drugs, immunosuppressive regimens to new biological therapies, remain inadequate. Advances in our understanding of the pathophysiological mechanisms underlying the pathogenetic disease process and the recent findings on the regenerative and immunoregulatory potential of stem cells open new opportunities in the therapy of inflammatory bowel disease. Therapeutic modalities, including hematopoietic stem cells, adult mesenchymal stem/stromal cells, and the recently identified amniotic origin stem cells, attracted much attention in the recent years. The current review highlights the recent pivotal findings for stem cell-based approaches to inflammatory bowel disease therapy. Copyright © 2014 Crohn's & Colitis Foundation of America, Inc

    Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road?

    No full text
    The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed. © 2022 by the authors

    The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases

    No full text
    The liver represents the most important metabolic organ of the human body. It is evident that an imbalance of liver function can lead to several pathological conditions, known as liver failure. Orthotropic liver transplantation (OLT) is currently the most effective and established treatment for end-stage liver diseases and acute liver failure (ALF). Due to several limitations, stem-cell-based therapies are currently being developed as alternative solutions. Stem cells or progenitor cells derived from various sources have emerged as an alternative source of hepatic regeneration. Therefore, hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are also known to differentiate into hepatocyte-like cells (HPLCs) and liver progenitor cells (LPCs) that can be used in preclinical or clinical studies of liver disease. Furthermore, these cells have been shown to be effective in the development of liver organoids that can be used for disease modeling, drug testing and regenerative medicine. In this review, we aim to discuss the characteristics of stem-cell-based therapies for liver diseases and present the current status and future prospects of using HLCs, LPCs or liver organoids in clinical trials. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Fetal mesenchymal stem cells in cancer therapy

    No full text
    There is compelling evidence that mesenchymal stem cells (MSCs) can be utilized as delivery vehicles for cancer therapeutics. During the last decade, bone marrow MSCs have been used as delivery vehicles for the local production of therapeutic proteins in multiple tumor types, taking advantage of their innate tropism to the tumor site and their low immunogenicity. More recently, MSCs have been isolated from fetal tissues during gestation or after birth. Fetal MSCs derived from amniotic fluid, amniotic membrane, umbilical cord matrix (Wharton's jelly) and umbilical cord blood are more advantageous than adult MSCs, as they can be isolated noninvasively in large numbers without the ethical reservations associated with embryo research. Several studies have documented that fetal MSCs harbor a therapeutic potential in cancer treatment, as they can home to the tumor site and reduce tumor burden. This natural tumor tropism together with their low immunogenicity renders fetal MSCs as powerful therapeutic tools in gene therapy-based cancer therapeutic schemes. This review summarizes various approaches where the tumor-homing capacity of fetal MSCs has been employed for the localized delivery of anti-tumor therapeutic agents. © 2013 Bentham Science Publishers

    Human amniotic fluid stem cells as an attractive tool for clinical applications

    No full text
    Recent studies support cell based therapies for several diseases. Human fetal stem cells have received much attention for developing new therapeutic strategies. Recently, our group and others have successfully isolated and expanded karyotypically normal stem cells from an alternative fetal source, the human second trimester amniotic fluid (AF) and performed a systematic phenotypic and molecular analysis. The main characteristics of amniotic fluid stem cells (hAFSCs) are their fetal origin, the high number of isolated cells, their wide differentiation properties and their rapid expansion in vitro. These characteristics render hAFSCs as a very attractive tool for clinical applications based on cell therapy. The use of hAFSC transplantation has been studied in a variety of disease animal models related to bone regeneration, myocardial infarction, acute kidney injury, acute hepatic failure, skin injury, ischemic hind limb or cancer. The major aim of this review is to summarize the advent of hAFSCs capabilities into novel therapeutic modalities and discuss their potential use in future pre-clinical and clinical studies. © 2013 Bentham Science Publishers

    Amniotic fluid and amniotic membrane stem cells: Marker discovery

    No full text
    Amniotic fluid (AF) and amniotic membrane (AM) have been recently characterized as promising sources of stem or progenitor cells. Both not only contain subpopulations with stem cell characteristics resembling to adult stem cells, such as mesenchymal stem cells, but also exhibit some embryonic stem cell properties like (i) expression of pluripotency markers, (ii) high expansion in vitro, or (iii) multilineage differentiation capacity. Recent efforts have been focused on the isolation and the detailed characterization of these stem cell types. However, variations in their phenotype, their heterogeneity described by different groups, and the absence of a single marker expressed only in these cells may prevent the isolation of a pure homogeneous stem cell population from these sources and their potential use of these cells in therapeutic applications. In this paper, we aim to summarize the recent progress in marker discovery for stem cells derived from fetal sources such as AF and AM, using novel methodologies based on transcriptomics, proteomics, or secretome analyses. © 2012 Maria G. Roubelakis et al

    Overview of microRNA target analysis tools

    No full text
    microRNA (miRNA) target prediction plays an important role in studying the post-transcriptional regulation by miRNAs. Numerous target prediction tools have been utilized in several research approaches for in silico analysis.This type of analysis provides the initial step for further experimental validation in biological systems in order to complete the target validation.In this review, we summarize the computational tools based on a single method for miRNA target prediction (single algorithm tools) and also the comparative target prediction tools, utilized in several research approaches for in silico analysis. Comparative target prediction tools have provided a novel methodology for miRNA target prediction by reducing the number of false positives. Such tools are combining results from multiple single algorithm tools, facilitating, in this way, the reduction of the false positive results and providing a more accurate prediction. The main goal of this review is to summarize the available literature on the miRNA target prediction algorithms and tools in an extensive manner. © 2012 Bentham Science Publishers

    Platelet-Rich Plasma (PRP) Promotes Fetal Mesenchymal Stem/Stromal Cell Migration and Wound Healing Process

    No full text
    Numerous studies have shown the presence of high levels of growth factors during the process of healing. Growth factors act by binding to the cell surface receptors and contribute to the subsequent activation of signal transduction mechanisms. Wound healing requires a complex of biological and molecular events that includes attraction and proliferation of different type of cells to the wound site, differentiation and angiogenesis. More specifically, migration of various cell types, such as endothelial cells and their precursors, mesenchymal stem/stromal cells (MSCs) or skin fibroblasts (DFs) plays an important role in the healing process. In recent years, the application of platelet rich plasma (PRP) to surgical wounds and skin ulcerations is becoming more frequent, as it is believed to accelerate the healing process. The local enrichment of growth factors at the wound after PRP application causes a stimulation of tissue regeneration. Herein, we studied: (i) the effect of autologous PRP in skin ulcers of patients of different aetiology, (ii) the proteomic profile of PRP, (iii) the migration potential of amniotic fluid MSCs and DFs in the presence of PRP extract in vitro, (iv) the use of the PRP extract as a substitute for serum in cultivating AF-MSCs. Considering its easy access, PRP may provide a valuable tool in multiple therapeutic approaches. © 2014 Springer Science+Business Media New York
    corecore