666 research outputs found

    Exchange your knowledge on plant gene families

    Get PDF

    Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots

    Get PDF
    Identifying the molecular mechanisms underlying tolerance to abiotic stresses is important in crop breeding. A comprehensive understanding of the gene families associated with drought tolerance is therefore highly relevant. NAC transcription factors form a large plant-specific gene family involved in the regulation of tissue development and responses to biotic and abiotic stresses. The main goal of this study was to set up a framework of orthologous groups determined by an expert sequence comparison of NAC genes from both monocots and dicots. In order to clarify the orthologous relationships among NAC genes of different species, we performed an in-depth comparative study of four divergent taxa, in dicots and monocots, whose genomes have already been completely sequenced: Arabidopsis thaliana, Vitis vinifera, Musa acuminata and Oryza sativa. Due to independent evolution, NAC copy number is highly variable in these plant genomes. Based on an expert NAC sequence comparison, we propose forty orthologous groups of NAC sequences that were probably derived from an ancestor gene present in the most recent common ancestor of dicots and monocots. These orthologous groups provide a curated resource for large-scale protein sequence annotation of NAC transcription factors. The established orthology relationships also provide a useful reference for NAC function studies in newly sequenced genomes such as M. acuminata and other plant species

    GreenPhylDB v2.0: An improved database for plant functional genomics

    Get PDF
    Poster presented at 2009 Annual Research Meeting of the Generation Challenge Programme. Bamako (Mali), 20-23 September 200

    GreenPhylDB: A Gene Family Database for plant functional Genomics

    Get PDF
    With the increasing number of genomes being sequenced, a major objective is to transfer accurate annotation from characterised proteins to uncharacterised sequences. Consequently, comparative genomics has become a usual and efficient strategy in functional genomics. The release of various annotated genomes of plants, such as _O. sativa_ and _A. thaliana_, has allowed setting up comprehensive lists of gene families defined by automated methods. However, like for gene sequence, manual curation of gene families is an important requirement that has to be undertaken. GreenPhylDB comprises protein sequences of 12 plant species fully sequenced that were grouped into homeomorphic families using similarity-based methods. Clusters are finally processed by phylogenetic analysis to infer orthologs and paralogs that will be particularly helpful to study genome evolution. Previously, each cluster has to be curated (i.e. properly named and classified) using different sources of information. A web interface for plant gene families’ curation was developed for that purpose. This interface, accessible on GreenPhylDB ("http://greenphyl.cirad.fr":http://greenphyl.cirad.fr), centralizes external references (e.g. InterPro, KEGG, Swiss-Prot, PIRSF, Pubmed) related to all gene members of the clusters and shows statistics and automatic analysis. We believe that this synthetic view of data available for a gene cluster, combined with basic guidelines, is an efficient way to provide reliable method for gene family annotations
    corecore