1,342 research outputs found

    Free energy functionals for efficient phase field crystal modeling of structural phase transformations

    Full text link
    The phase field crystal (PFC) method has emerged as a promising technique for modeling materials with atomistic resolution on mesoscopic time scales. The approach is numerically much more efficient than classical density functional theory (CDFT), but its single mode free energy functional only leads to lattices with triangular (2D) or BCC (3D) symmetries. By returning to a closer approximation of the CDFT free energy functional, we develop a systematic construction of two-particle direct correlation functions that allow the study of a broad class of crystalline structures. This construction examines planar spacings, lattice symmetries, planar atomic densities and the atomic vibrational amplitude in the unit cell of the lattice and also provides control parameters for temperature and anisotropic surface energies. The power of this new approach is demonstrated by two examples of structural phase transformations.Comment: 4 pages, 4 figure

    Local Molecular Dynamics with Coulombic Interaction

    Full text link
    We propose a local, O(N) molecular dynamics algorithm for the simulation of charged systems. The long ranged Coulomb potential is generated by a propagating electric field that obeys modified Maxwell equations. On coupling the electrodynamic equations to an external thermostat we show that the algorithm produces an effective Coulomb potential between particles. On annealing the electrodynamic degrees of freedom the field configuration converges to a solution of the Poisson equation much like the electronic degrees of freedom approach the ground state in ab-initio molecular dynamics.Comment: 4 pages with 3 figure

    Understanding plastic deformation in thermal glasses from single-soft-spot dynamics

    Full text link
    By considering the low-frequency vibrational modes of amorphous solids, Manning and Liu [Phys. Rev. Lett. 107, 108302 (2011)] showed that a population of "soft spots" can be identified that are intimately related to plasticity at zero temperature under quasistatic shear. In this work we track individual soft spots with time in a two-dimensional sheared thermal Lennard Jones glass at temperatures ranging from deep in the glassy regime to above the glass transition temperature. We show that the lifetimes of individual soft spots are correlated with the timescale for structural relaxation. We additionally calculate the number of rearrangements required to destroy soft spots, and show that most soft spots can survive many rearrangements. Finally, we show that soft spots are robust predictors of rearrangements at temperatures well into the super-cooled regime. Altogether, these results pave the way for mesoscopic theories of plasticity of amorphous solids based on dynamical behavior of individual soft spots.Comment: 9 pages, 6 figure

    Growth, microstructure, and failure of crazes in glassy polymers

    Full text link
    We report on an extensive study of craze formation in glassy polymers. Molecular dynamics simulations of a coarse-grained bead-spring model were employed to investigate the molecular level processes during craze nucleation, widening, and breakdown for a wide range of temperature, polymer chain length NN, entanglement length NeN_e and strength of adhesive interactions between polymer chains. Craze widening proceeds via a fibril-drawing process at constant drawing stress. The extension ratio is determined by the entanglement length, and the characteristic length of stretched chain segments in the polymer craze is Ne/3N_e/3. In the craze, tension is mostly carried by the covalent backbone bonds, and the force distribution develops an exponential tail at large tensile forces. The failure mode of crazes changes from disentanglement to scission for N/Ne∼10N/N_e\sim 10, and breakdown through scission is governed by large stress fluctuations. The simulations also reveal inconsistencies with previous theoretical models of craze widening that were based on continuum level hydrodynamics

    Local Simulation Algorithms for Coulombic Interactions

    Full text link
    We consider dynamically constrained Monte-Carlo dynamics and show that this leads to the generation of long ranged effective interactions. This allows us to construct a local algorithm for the simulation of charged systems without ever having to evaluate pair potentials or solve the Poisson equation. We discuss a simple implementation of a charged lattice gas as well as more elaborate off-lattice versions of the algorithm. There are analogies between our formulation of electrostatics and the bosonic Hubbard model in the phase approximation. Cluster methods developed for this model further improve the efficiency of the electrostatics algorithm.Comment: Proceedings Statphys22 10 page

    Unified Description of Aging and Rate Effects in Yield of Glassy Solids

    Full text link
    The competing effects of slow structural relaxations (aging) and deformation at constant strain rate on the shear yield stress Ï„y\tau^y of simple model glasses are examined using molecular simulations. At long times, aging leads to a logarithmic increase in density and Ï„y\tau^y. The yield stress also rises logarithmically with rate, but shows a sharp transition in slope at a rate that decreases with increasing age. We present a simple phenomenological model that includes both intrinsic rate dependence and the change in properties with the total age of the system at yield. As predicted by the model, all data for each temperature collapse onto a universal curve.Comment: 4 pages, 3 figure

    A QM/MM approach for low-symmetry defects in metals

    Get PDF
    Concurrent multiscale coupling is a powerful tool for obtaining quantum mechanically (QM) accurate material behavior in a small domain while still capturing long range stress fields using a molecular mechanical (MM) description. We outline an improved scheme for QM/MM coupling in metals which permits the QM treatment of a small region chosen from a large, arbitrary MM domain to calculate total system energy and relaxed geometry. In order to test our improved method, we compute solute-vacancy binding in bulk Al as well as the binding of Mg and Pb to a symmetric Σ5 grain boundary. Results are calculated with and without our improvement to the QM/MM scheme and compared to periodic QM results for the same systems. We find that our scheme accurately and efficiently reproduces periodic QM target values in these test systems and therefore can be expected to perform well using more general geometries. © 2016 Published by Elsevier B.V
    • …
    corecore