29 research outputs found

    Microscopic origin of tunable assembly forces in chiral active environments

    Full text link
    The fluctuations of a nonequilibrium bath enable dynamics inaccessible to any equilibrium system. Exploiting the driven dynamics of active matter in order to do useful work has become a topic of significant experimental and theoretical interest. Due to the unique modalities controlling self-assembly, the interplay between passive solutes and the particles in an active bath has been studied as a potential driving force to guide assembly of otherwise non-interacting objects. Here, we investigate and characterize the microscopic origins of the attractive and repulsive interactions between passive solutes in an active bath. We show that, while assembly does not occur dynamically for achiral active baths, chiral active particles can produce stable and robust assembly forces. We both explain the observed oscillatory force profile for active Brownian particles and demonstrate that chiral active motion leads to fluxes consistent with an odd diffusion tensor that, when appropriately tuned, produces long-ranged assembly forces

    Efficiency and Large Deviations in Time-Asymmetric Stochastic Heat Engines

    Full text link
    In a stochastic heat engine driven by a cyclic non-equilibrium protocol, fluctuations in work and heat give rise to a fluctuating efficiency. Using computer simulations and tools from large deviation theory, we have examined these fluctuations in detail for a model two-state engine. We find in general that the form of efficiency probability distributions is similar to those described by Verley et al. [2014 Nat Comm, 5 4721], in particular featuring a local minimum in the long-time limit. In contrast to the time-symmetric engine protocols studied previously, however, this minimum need not occur at the value characteristic of a reversible Carnot engine. Furthermore, while the local minimum may reside at the global minimum of a large deviation rate function, it does not generally correspond to the least likely efficiency measured over finite time. We introduce a general approximation for the finite-time efficiency distribution, P(η)P(\eta), based on large deviation statistics of work and heat, that remains very accurate even when P(η)P(\eta) deviates significantly from its large deviation form.Comment: 10 pages, 3 figure

    Near-optimal protocols in complex nonequilibrium transformations

    Get PDF
    The development of sophisticated experimental means to control nanoscale systems has motivated efforts to design driving protocols which minimize the energy dissipated to the environment. Computational models are a crucial tool in this practical challenge. We describe a general method for sampling an ensemble of finite-time, nonequilibrium protocols biased towards a low average dissipation. We show that this scheme can be carried out very efficiently in several limiting cases. As an application, we sample the ensemble of low-dissipation protocols that invert the magnetization of a 2D Ising model and explore how the diversity of the protocols varies in response to constraints on the average dissipation. In this example, we find that there is a large set of protocols with average dissipation close to the optimal value, which we argue is a general phenomenon.Comment: 6 pages and 3 figures plus 4 pages and 5 figures of supplemental materia

    Ensuring thermodynamic consistency with invertible coarse-graining

    Full text link
    Coarse-grained models are a core computational tool in theoretical chemistry and biophysics. A judicious choice of a coarse-grained model can yield physical insight by isolating the essential degrees of freedom that dictate the thermodynamic properties of a complex, condensed-phase system. The reduced complexity of the model typically leads to lower computational costs and more efficient sampling compared to atomistic models. Designing ``good'' coarse-grained models is an art. Generally, the mapping from fine-grained configurations to coarse-grained configurations itself is not optimized in any way; instead, the energy function associated with the mapped configurations is. In this work, we explore the consequences of optimizing the coarse-grained representation alongside its potential energy function. We use a graph machine learning framework to embed atomic configurations into a low dimensional space to produce efficient representations of the original molecular system. Because the representation we obtain is no longer directly interpretable as a real space representation of the atomic coordinates, we also introduce an inversion process and an associated thermodynamic consistency relation that allows us to rigorously sample fine-grained configurations conditioned on the coarse-grained sampling. We show that this technique is robust, recovering the first two moments of the distribution of several observables in proteins such as chignolin and alanine dipeptide
    corecore