4 research outputs found

    Fungus Metarhizium robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles

    Get PDF
    Fungal infections and toxicoses caused by insecticides may alter microbial communities and immune responses in the insect gut. We investigated the effects of Metarhizium robertsii fungus and avermectins on the midgut physiology of Colorado potato beetle larvae. We analyzed changes in the bacterial community, immunity- and stress-related gene expression, reactive oxygen species (ROS) production, and detoxification enzyme activity in response to topical infection with the M. robertsii fungus, oral administration of avermectins, and a combination of the two treatments. Avermectin treatment led to a reduction in microbiota diversity and an enhancement in the abundance of enterobacteria, and these changes were followed by the downregulation of Stat and Hsp90, upregulation of transcription factors for the Toll and IMD pathways and activation of detoxification enzymes. Fungal infection also led to a decrease in microbiota diversity, although the changes in community structure were not significant, except for the enhancement of Serratia. Fungal infection decreased the production of ROS but did not affect the gene expression of the immune pathways. In the combined treatment, fungal infection inhibited the activation of detoxification enzymes and prevented the downregulation of the JAK-STAT pathway caused by avermectins. The results of this study suggest that fungal infection modulates physiological responses to avermectins and that fungal infection may increase avermectin toxicosis by blocking detoxification enzymes in the gut

    Expression of Immunity- and Stress-Related Genes during an Intermolt Period in the Colorado Potato Beetle

    No full text
    Different developmental stages of insects may be dissimilar in immunity functioning. Additionally, the stages often inhabit diverse environments with specific microbial communities. In the Colorado potato beetle, a strong increase in resistance to entomopathogenic fungi is observed during the intermolt period of last-instar larvae, but mechanisms of this change are insufficiently understood. We studied changes in the expression of immunity- and stress-related genes in the fat body and integument during this intermolt period by quantitative PCR. By the end of the instar, there was upregulation of transcription factors of Toll, IMD, and Jak–Stat pathways as well as genes encoding metalloprotease inhibitors, odorant-binding proteins, and heat shock proteins. Nonetheless, the expression of gene LdRBLk encoding β-lectin did not change during this period. Most of the aforementioned genes were upregulated in response to Metarhizium robertsii topical infection. The expression alterations were more pronounced in recently molted larvae than in finishing feeding larvae and in the integument compared to the fat body. We believe that upregulation of immune-system- and stress-related genes at the end of the intermolt period is an adaptation caused by migration of larvae into soil, where the probability of encountering entomopathogenic fungi is high

    Identification of the Ricin-B-Lectin LdRBLk in the Colorado Potato Beetle and an Analysis of Its Expression in Response to Fungal Infections

    No full text
    Ricin-B-lectins (RBLs) have been identified in many groups of organisms, including coleopterans insects, particularly the Colorado potato beetle Leptinotarsa decemlineata (LdRBLs). We hypothesized that one of these LdRBLs (LdRBLk) may be involved in the immune response to fungal infections. We performed a theoretical analysis of the structure of this protein. Additionally, the expression levels of the LdRBlk gene were measured in L. decemlineata in response to infections with the fungi Metarhizium robertsii and Beauveria bassiana. The expression levels of LdRBlk in the L. decemlineata cuticle and fat body were increased in response to both infections. The induction of LdRBlk expression was dependent on the susceptibility of larvae to the fungi. Upregulation of the LdRBlk gene was also observed in response to other stresses, particularly thermal burns. Elevation of LdRBlk expression was frequently observed to be correlated with the expression of the antimicrobial peptide attacin but was not correlated with hsp90 regulation. Commercially available Ξ²-lectin of ricin from Ricinuscommunis was observed to inhibit the germination of conidia of the fungi. We suggest that LdRBLk is involved in antifungal immune responses in the Colorado potato beetle, either exerting fungicidal properties directly or acting as a modulator of the immune response
    corecore