6,839 research outputs found
The self-consistent general relativistic solution for a system of degenerate neutrons, protons and electrons in beta-equilibrium
We present the self-consistent treatment of the simplest, nontrivial,
self-gravitating system of degenerate neutrons, protons and electrons in
-equilibrium within relativistic quantum statistics and the
Einstein-Maxwell equations. The impossibility of imposing the condition of
local charge neutrality on such systems is proved, consequently overcoming the
traditional Tolman-Oppenheimer-Volkoff treatment. We emphasize the crucial role
of imposing the constancy of the generalized Fermi energies. A new approach
based on the coupled system of the general relativistic
Thomas-Fermi-Einstein-Maxwell equations is presented and solved. We obtain an
explicit solution fulfilling global and not local charge neutrality by solving
a sophisticated eigenvalue problem of the general relativistic Thomas-Fermi
equation. The value of the Coulomb potential at the center of the configuration
is and the system is intrinsically stable against
Coulomb repulsion in the proton component. This approach is necessary, but not
sufficient, when strong interactions are introduced.Comment: Letter in press, Physics Letters B (2011
A nearly zero-energy microgrid testbed laboratory: Centralized control strategy based on SCADA system
Currently, despite the use of renewable energy sources (RESs), distribution networks are facing problems, such as complexity and low productivity. Emerging microgrids (MGs) with RESs based on supervisory control and data acquisition (SCADA) are an effective solution to control, manage, and finally deal with these challenges. The development and success of MGs is highly dependent on the use of power electronic interfaces. The use of these interfaces is directly related to the progress of SCADA systems and communication infrastructures. The use of SCADA systems for the control and operation of MGs and active distribution networks promotes productivity and efficiency. This paper presents a real MG case study called the LAMBDA MG testbed laboratory, which has been implemented in the electrical department of the Sapienza University of Rome with a centralized energy management system (CEMS). The real-time results of the SCADA system show that a CEMS can create proper energy balance in a LAMBDA MG testbed and, consequently, minimize the exchange power of the LAMBDA MG and main grid
Reconstruction of semileptonically decaying beauty hadrons produced in high energy pp collisions
It is well known that in hadron decays with a single unreconstructible
final state particle, the decay kinematics can be solved up to a quadratic
ambiguity, without any knowledge of the hadron momentum. We present a
method to infer the momenta of hadrons produced in hadron collider
experiments using information from their reconstructed flight vectors. Our
method is strictly agnostic to the decay itself, which implies that it can be
validated with control samples of topologically similar decays to fully
reconstructible final states. A multivariate regression algorithm based on the
flight information provides a hadron momentum estimate with a resolution of
around 60% which is sufficient to select the correct solution to the quadratic
equation in around 70% of cases. This will improve the ability of hadron
collider experiments to make differential decay rate measurements with
semileptonic hadron decays.Comment: 18 pages, 17 figures. Updated version to be published in JHE
A model for the development of types of atolls and volcanic islands on the Pacific lithospheric plate
"This paper is an expansion of a paper first delivered to the Annual Meeting of the Association of Canadian Geographers at Laval University, Quebec, May 1976."A literature review on atoll origins and volcanic island development on the Pacific lithospheric plate is combined with bathymetric data on the Hawaiian, Marshall, Caroline, Tuamotu and Society island chains to produce a model which helps explain the development of all major Pacific plate island types. This model incorporates the concept that as new lithosphere is formed along the East Pacific Rise older crust moves north-west towards Asia, cools and causes ocean deepening. Some distance from the East Pacific Rise relatively fixed melting anomalies produce volcanic island chains. In warmer waters these islands develop fringing reefs which continue to grow to wave level as the islands are carried on the cooling plate into deeper water. Raised volcanic island forms can develop on arches produced by the isostatic subsidence of new magmatic outpourings close by. As volcanic islands with fringing reefs move into deeper water almost-atolls and finally true atolls develop. Partly raised and raised forms result if atolls rise over minor upwarps on the crust produced by, 1) asthenospheric bumps, 2) arch flexuring resulting from isostatic subsidence of nearby magmatic outpourings, 3) compression within the lithosphere alongside Pacific plate subduction zones. The model also helps explain certain types of drowned atolls and guyots."Financial assistance from the University of Winnipeg is acknowledged.
Strong electric fields induced on a sharp stellar boundary
Due to a first order phase transition, a compact star may have a
discontinuous distribution of baryon as well as electric charge densities, as
e.g. at the surface of a strange quark star. The induced separation of positive
and negative charges may lead to generation of supercritical electric fields in
the vicinity of such a discontinuity. We study this effect within a
relativistic Thomas-Fermi approximation and demonstrate that the strength of
the electric field depends strongly on the degree of sharpness of the surface.
The influence of strong electric fields on the stability of compact stars is
discussed. It is demonstrated that stable configurations appear only when the
counter-pressure of degenerate fermions is taken into consideration.Comment: 13 pages, 2 figure
On the Mass to Charge Ratio of Neutron Cores and Heavy Nuclei
We determine theoretically the relation between the total number of protons
and the mass number (the charge to mass ratio) of nuclei and
neutron cores with the model recently proposed by Ruffini et al. (2007) and we
compare it with other versus relations: the empirical one, related to
the Periodic Table, and the semi-empirical relation, obtained by minimizing the
Weizs\"{a}cker mass formula. We find that there is a very good agreement
between all the relations for values of typical of nuclei, with differences
of the order of per cent. Our relation and the semi-empirical one are in
agreement up to ; for higher values, we find that the two relations
differ. We interprete the different behaviour of our theoretical relation as a
result of the penetration of electrons (initially confined in an external
shell) inside the core, that becomes more and more important by increasing ;
these effects are not taken into account in the semi-empirical mass-formula.Comment: Some misprints of the published version corrected (value of nuclear
density and eq. 7). Talk given at the 4th Italian-Sino Workshop, July 20-30
(2007), Pescara (Italy
New building blocks for the ALICE SDD readout and Detector Control System in a commercial 0.25 m CMOS technology
- …
