9 research outputs found

    Incremental Value of Computed Tomography Perfusion for Final Infarct Prediction in Acute Ischemic Cerebellar Stroke

    Get PDF
    Background The diagnosis of ischemic cerebellar stroke is challenging because of nonspecific symptoms and very limited accuracy of commonly applied computed tomography (CT) imaging. Advances in CT perfusion imaging provide increasing value in the detection of posterior circulation stroke, but the prognostic value remains unclear. We aimed to identify imaging parameters that predict morphologic outcome in cerebellar stroke patients using advanced CT including whole‐brain CT perfusion (WB‐CTP). Methods and Results We selected all subjects with cerebellar WB‐CTP perfusion deficits and follow‐up‐confirmed cerebellar infarction from a consecutive cohort with suspected stroke who underwent WB‐CTP. Posterior‐circulation‐Acute‐Stroke‐Prognosis‐Early‐CT‐Score (pc‐ASPECTS) was determined on noncontrast CT, CT angiography source images, and on parametric WB‐CTP maps. Cerebellar perfusion deficit volumes on all maps and the final infarction volume on follow‐up imaging were quantified. Uni‐ and multivariate regression analyses were performed. Sixty patients fulfilled the inclusion criteria. pc‐ASPECTS on CT angiography source images (ß, −9.239; 95% CI, −14.220 to −4.259; P0.05). Conclusions In contrast to noncontrast CT and CT angiography, WB‐CTP imaging contains prognostic information for morphologic outcome in patients with acute cerebellar stroke

    Computed tomography hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch to identify stroke patients eligible for thrombolysis

    Get PDF
    Background and purposeAutomated perfusion imaging can detect stroke patients with unknown time of symptom onset who are eligible for thrombolysis. However, the availability of this technique is limited. We, therefore, established the novel concept of computed tomography (CT) hypoperfusion-hypodensity mismatch, i.e., an ischemic core lesion visible on cerebral perfusion CT without visible hypodensity in the corresponding native cerebral CT. We compared both methods regarding their accuracy in identifying patients suitable for thrombolysis.MethodsIn a retrospective analysis of the MissPerfeCT observational cohort study, patients were classified as suitable or not for thrombolysis based on established time window and imaging criteria. We calculated predictive values for hypoperfusion-hypodensity mismatch and automated perfusion imaging to compare accuracy in the identification of patients suitable for thrombolysis.ResultsOf 247 patients, 219 (88.7%) were eligible for thrombolysis and 28 (11.3%) were not eligible for thrombolysis. Of 197 patients who were within 4.5 h of symptom onset, 190 (96.4%) were identified by hypoperfusion-hypodensity mismatch and 88 (44.7%) by automated perfusion mismatch (p < 0.001). Of 22 patients who were beyond 4.5 h of symptom onset but were eligible for thrombolysis, 5 patients (22.7%) were identified by hypoperfusion-hypodensity mismatch. Predictive values for the hypoperfusion-hypodensity mismatch vs. automated perfusion mismatch were as follows: sensitivity, 89.0% vs. 50.2%; specificity, 71.4% vs. 100.0%; positive predictive value, 96.1% vs. 100.0%; and negative predictive value, 45.5% vs. 20.4%.ConclusionThe novel method of hypoperfusion-hypodensity mismatch can identify patients suitable for thrombolysis with higher sensitivity and lower specificity than established techniques. Using this simple method might therefore increase the proportion of patients treated with thrombolysis without the use of special automated software.The MissPerfeCT study is a retrospective observational multicenter cohort study and is registered with clinicaltrials.gov (NCT04277728)

    Myocardial Radiomics Texture Features Associated with Increased Coronary Calcium Score—First Results of a Photon-Counting CT

    No full text
    The coronary artery calcium score is an independent risk factor of the development of adverse cardiac events. The severity of coronary artery calcification may influence the myocardial texture. Due to higher spatial resolution and signal-to-noise ratio, new CT technologies such as PCCT may improve the detection of texture alterations depending on the severity of coronary artery calcification. In this retrospective, single-center, IRB-approved study, left ventricular myocardium was segmented and radiomics features were extracted using pyradiomics. The mean and standard deviation with the Pearson correlation coefficient for correlations of features were calculated and visualized as boxplots and heatmaps. Random forest feature selection was performed. Thirty patients (26.7% women, median age 58 years) were enrolled in the study. Patients were divided into two subgroups depending on the severity of coronary artery calcification (Agatston score 0 and Agatston score ≄ 100). Through random forest feature selection, a set of four higher-order features could be defined to discriminate myocardial texture between the two groups. When including the additional Agatston 1–99 groups as a validation, a severity-associated change in feature intensity was detected. A subset of radiomics features texture alterations of the left ventricular myocardium was associated with the severity of coronary artery calcification estimated by the Agatston score

    Comparison Study of Myocardial Radiomics Feature Properties on Energy-Integrating and Photon-Counting Detector CT

    No full text
    The implementation of radiomics-based, quantitative imaging parameters is hampered by a lack of stability and standardization. Photon-counting computed tomography (PCCT), compared to energy-integrating computed tomography (EICT), does rely on a novel detector technology, promising better spatial resolution and contrast-to-noise ratio. However, its effect on radiomics feature properties is unknown. This work investigates this topic in myocardial imaging. In this retrospective, single-center IRB-approved study, the left ventricular myocardium was segmented on CT, and the radiomics features were extracted using pyradiomics. To compare features between scanners, a t-test for non-paired samples and F-test was performed, with a threshold of 0.05 set as a benchmark for significance. Feature correlations were calculated by the Pearson correlation coefficient, and visualization was performed with heatmaps. A total of 50 patients (56% male, mean age 56) were enrolled in this study, with equal proportions of PCCT and EICT. First-order features were, nearly, comparable between both groups. However, higher-order features showed a partially significant difference between PCCT and EICT. While first-order radiomics features of left ventricular myocardium show comparability between PCCT and EICT, detected differences of higher-order features may indicate a possible impact of improved spatial resolution, better detection of lower-energy photons, and a better signal-to-noise ratio on texture analysis on PCCT

    The wavelet power spectrum of perfusion weighted MRI correlates with tumor vascularity in biopsy-proven glioblastoma samples

    Get PDF
    BACKGROUND:Wavelet transformed reconstructions of dynamic susceptibility contrast (DSC) MR perfusion (wavelet-MRP) are a new and elegant way of visualizing vascularization. Wavelet-MRP maps yield a clear depiction of hypervascular tumor regions, as recently shown. OBJECTIVE:The aim of this study was to elucidate a possible connection of the wavelet-MRP power spectrum in glioblastoma (GBM) with local vascularity and cell proliferation. METHODS:For this IRB-approved study 12 patients (63.0+/-14.9y; 7m) with histologically confirmed IDH-wildtype GBM were included. Target regions for biopsies were prospectively marked on tumor regions as seen on preoperative 3T MRI. During subsequent neurosurgical tumor resection 43 targeted biopsies were taken from these target regions, of which all 27 matching samples were analyzed. All specimens were immunohistochemically analyzed for endothelial cell marker CD31 and proliferation marker Ki67 and correlated to the wavelet-MRP power spectrum as derived from DSC perfusion weighted imaging. RESULTS:There was a strong correlation between wavelet-MRP power spectrum (median = 4.41) and conventional relative cerebral blood volume (median = 5.97 ml/100g) in Spearman's rank-order correlation (Îș = .83, p < .05). In a logistic regression model, the wavelet-MRP power spectrum showed a significant correlation to CD31 dichotomized to no or present staining (p = .04), while rCBV did not show a significant correlation to CD31 (p = .30). No significant association between Ki67 and rCBV or wavelet-MRP was found (p = .62 and p = .70, respectively). CONCLUSION:The wavelet-MRP power spectrum derived from existing DSC-MRI data might be a promising new surrogate for tumor vascularity in GBM

    Effect of stroke thrombolysis predicted by distal vessel occlusion detection

    Get PDF
    OBJECTIVE Among ischemic stroke patients with negative CT angiography (CTA), we aimed to determine the predictive value of enhanced distal vessel occlusion detection using CT perfusion postprocessing (waveletCTA) for the treatment effect of IV thrombolysis (IVT). METHODS Patients were selected from 1,851 consecutive patients who had undergone CT perfusion. Inclusion criteria were (1) significant cerebral blood flow (CBF) deficit, (2) no occlusion on CTA, and (3) infarction confirmed on follow-up. Favorable morphologic response was defined as smaller values of final infarction volume divided by initial CBF deficit volume (FIV/CBF). Favorable functional outcome was defined as modified Rankin Scale score of ≀2 after 90 days and decrease in NIH Stroke Scale score of ≄3 from admission to 24 hours (∆NIHSS). RESULTS Among patients with negative CTA (n = 107), 58 (54%) showed a distal occlusion on waveletCTA. There was no difference between patients receiving IVT (n = 57) vs supportive care (n = 50) regarding symptom onset, early ischemic changes, perfusion mismatch, or admission NIHSS score (all > 0.05). In IVT-treated patients, the presence of an occlusion was an independent predictor of a favorable morphologic response (FIV/CBF: ÎČ -1.43; 95% confidence interval [CI] -1.96, -0.83; = 0.001) and functional outcome (90-day modified Rankin Scale: odds ratio 7.68; 95% CI 4.33-11.51; = 0.039; ∆NIHSS: odds ratio 5.76; 95% CI 3.98-8.27; = 0.013), while it did not predict outcome in patients receiving supportive care (all > 0.05). CONCLUSION In stroke patients with negative CTA, distal vessel occlusions as detected by waveletCTA are an independent predictor of a favorable response to IVT
    corecore