6,468 research outputs found
Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals
We report novel magnetotransport properties of the low temperature Fermi
liquid in SrTiO3-x single crystals. The classical limit dominates the
magnetotransport properties for a magnetic field perpendicular to the sample
surface and consequently a magnetic-field induced resistivity minimum emerges.
While for the field applied in plane and normal to the current, the linear
magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large
anisotropy in the transverse MRs reveals the strong surface interlayer
scattering due to the large gradient of oxygen vacancy concentration from the
surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in
our case was likely due to the inhomogeneity of oxygen vacancies and oxygen
vacancy clusters, which could provide experimental evidences for the unusual
quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788
(1998)].Comment: 5 pages, 4 figure
Evidence for phase formation in potassium intercalated 1,2;8,9-dibenzopentacene
We have prepared potassium intercalated 1,2;8,9-dibenzopentacene films under
vacuum conditions. The evolution of the electronic excitation spectra upon
potassium addition as measured using electron energy-loss spectroscopy clearly
indicate the formation of particular doped phases with compositions
Kdibenzopentacene ( = 1,2,3). Moreover, the stability of these phases as
a function of temperature has been explored. Finally, the electronic excitation
spectra also give insight into the electronic ground state of the potassium
doped 1,2;8,9-dibenzopentacene films.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with
arXiv:1201.200
Mean-field analysis of the stability of a K-Rb Fermi-Bose mixture
We compare the experimental stability diagram of a Fermi-Bose mixture of K-40
and Rb-87 atoms with attractive interaction to the predictions of a mean-field
theoretical model. We discuss how this comparison can be used to give a better
estimate of the interspecies scattering length, which is currently known from
collisional measurements with larger uncertainty.Comment: 5 pages, 4 figure
A 31T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature
We have developed a pulsed magnet system with panoramic access for
synchrotron x-ray diffraction in magnetic fields up to 31T and at low
temperature down to 1.5 K. The apparatus consists of a split-pair magnet, a
liquid nitrogen bath to cool the pulsed coil, and a helium cryostat allowing
sample temperatures from 1.5 up to 250 K. Using a 1.15MJ mobile generator,
magnetic field pulses of 60 ms length were generated in the magnet, with a rise
time of 16.5 ms and a repetition rate of 2 pulses/hour at 31 T. The setup was
validated for single crystal diffraction on the ESRF beamline ID06
Finite temperature effects on the collapse of trapped Bose-Fermi mixtures
By using the self-consistent Hartree-Fock-Bogoliubov-Popov theory, we present
a detailed study of the mean-field stability of spherically trapped Bose-Fermi
mixtures at finite temperature. We find that, by increasing the temperature,
the critical particle number of bosons (or fermions) and the critical
attractive Bose-Fermi scattering length increase, leading to a significant
stabilization of the mixture.Comment: 5 pages, 4 figures; minor changes, proof version, to appear in Phys.
Rev. A (Nov. 1, 2003
Anomalous spin-splitting of two-dimensional electrons in an AlAs Quantum Well
We measure the effective Lande g-factor of high-mobility two-dimensional
electrons in a modulation-doped AlAs quantum well by tilting the sample in a
magnetic field and monitoring the evolution of the magnetoresistance
oscillations. The data reveal that |g| = 9.0, which is much enhanced with
respect to the reported bulk value of 1.9. Surprisingly, in a large range of
magnetic field and Landau level fillings, the value of the enhanced g-factor
appears to be constant.Comment: 4 pages, 3 figure
Thermodynamics of a Trapped Bose-Fermi Mixture
By using the Hartree-Fock-Bogoliubov equations within the Popov
approximation, we investigate the thermodynamic properties of a dilute binary
Bose-Fermi mixture confined in an isotropic harmonic trap. For mixtures with an
attractive Bose-Fermi interaction we find a sizable enhancement of the
condensate fraction and of the critical temperature of Bose-Einstein
condensation with respect to the predictions for a pure interacting Bose gas.
Conversely, the influence of the repulsive Bose-Fermi interaction is less
pronounced. The possible relevance of our results in current experiments on
trapped {\rm K} mixtures is discussed.Comment: 5 pages + 4 figures; minor changes, final version to appear in Phys.
Rev. A; the extension work on the finite-temperature low-lying excitations
can be found in cond-mat/030763
Recommended from our members
Turbulent flow at 190 m height above London during 2006-2008: A climatology and the applicability of similarity theory
Flow and turbulence above urban terrain is more complex than above rural terrain, due to the different momentum and heat transfer characteristics that are affected by the presence of buildings (e.g. pressure variations around buildings). The applicability of similarity theory (as developed over rural terrain) is tested using observations of flow from a sonic anemometer located at 190.3 m height in London, U.K. using about 6500 h of data. Turbulence statistics—dimensionless wind speed and temperature, standard deviations and correlation coefficients for momentum and heat transfer—were analysed in three ways. First, turbulence statistics were plotted as a function only of a local stability parameter z/Λ (where Λ is the local Obukhov length and z is the height above ground); the σ_i/u_* values (i = u, v, w) for neutral conditions are 2.3, 1.85 and 1.35 respectively, similar to canonical values. Second, analysis of urban mixed-layer formulations during daytime convective conditions over London was undertaken, showing that atmospheric turbulence at high altitude over large cities might not behave dissimilarly from that over rural terrain. Third, correlation coefficients for heat and momentum were analyzed with respect to local stability. The results give confidence in using the framework of local similarity for turbulence measured over London, and perhaps other cities. However, the following caveats for our data are worth noting: (i) the terrain is reasonably flat, (ii) building heights vary little over a large area, and (iii) the sensor height is above the mean roughness sublayer depth
- …