28,683 research outputs found
Depletion potentials near geometrically structured substrates
Using the recently developed so-called White Bear version of Rosenfeld's
Fundamental Measure Theory we calculate the depletion potentials between a
hard-sphere colloidal particle in a solvent of small hard spheres and simple
models of geometrically structured substrates: a right-angled wedge or edge. In
the wedge geometry, there is a strong attraction beyond the corresponding one
near a planar wall that significantly influences the structure of colloidal
suspensions in wedges. In accordance with an experimental study, for the edge
geometry we find a free energy barrier of the order of several which
repels a big colloidal particle from the edge.Comment: 7 pages, 7 figure
A likelihood method to cross-calibrate air-shower detectors
We present a detailed statistical treatment of the energy calibration of
hybrid air-shower detectors, which combine a surface detector array and a
fluorescence detector, to obtain an unbiased estimate of the calibration curve.
The special features of calibration data from air showers prevent unbiased
results, if a standard least-squares fit is applied to the problem. We develop
a general maximum-likelihood approach, based on the detailed statistical model,
to solve the problem. Our approach was developed for the Pierre Auger
Observatory, but the applied principles are general and can be transferred to
other air-shower experiments, even to the cross-calibration of other
observables. Since our general likelihood function is expensive to compute, we
derive two approximations with significantly smaller computational cost. In the
recent years both have been used to calibrate data of the Pierre Auger
Observatory. We demonstrate that these approximations introduce negligible bias
when they are applied to simulated toy experiments, which mimic realistic
experimental conditions.Comment: 10 pages, 7 figure
Spin-orbital excitation continuum and anomalous electron-phonon interaction in the Mott insulator LaTiO
Raman scattering experiments on stoichiometric, Mott-insulating LaTiO
over a wide range of excitation energies reveal a broad electronic continuum
which is featureless in the paramagnetic state, but develops a gap of cm upon cooling below the N\'eel temperature K. In the
antiferromagnetic state, the spectral weight below the gap is transferred to
well-defined spectral features due to spin and orbital excitations. Low-energy
phonons exhibit pronounced Fano anomalies indicative of strong interaction with
the electron system for , but become sharp and symmetric for . The electronic continuum and the marked renormalization of the phonon
lifetime by the onset of magnetic order are highly unusual for Mott insulators
and indicate liquid-like correlations between spins and orbitals.Comment: to appear in Phys. Rev. Let
Glass Ceiling Commission - The Impact of the Glass Ceiling and Structural Change on Minorities and Women
Glass Ceiling ReportGlassCeilingBackground12StructuralChange.pdf: 9391 downloads, before Oct. 1, 2020
- …
