27,041 research outputs found

    Giant Resonances based on Unitarily Transformed Two-Nucleon plus Phenomenological Three-Nucleon Interactions

    Full text link
    We investigate giant resonances of spherical nuclei on the basis of the Argonne V18 potential after unitary transformation within the Similarity Renormalization Group or the Unitary Correlation Operator Method supplemented by a phenomenological three-body contact interaction. Such Hamiltonians can provide a good description of ground-state energies and radii within Hartree-Fock plus low-order many-body perturbation theory. The standard Random Phase Approximation is applied here to calculate the isoscalar monopole, isovector dipole, and isoscalar quadrupole excitation modes of the 40Ca, 90Zr, and 208Pb nuclei. Thanks to the inclusion of the three-nucleon interaction and despite the minimal optimization effort, a reasonable agreement with experimental centroid energies of all three modes has been achieved. The role and scope of the Hartree-Fock reference state in RPA methods are discussed.Comment: v2: 11 pages, incl. 3 figures; extended discussion and outlook; to appear in J.Phys.

    Science Verification Results from PMAS

    Full text link
    PMAS, the Potsdam Multi-Aperture Spectrophotometer, is a new integral field instrument which was commissioned at the Calar Alto 3.5m Telescope in May 2001. We report on results obtained from a science verification run in October 2001. We present observations of the low-metallicity blue compact dwarf galaxy SBS0335-052, the ultra-luminous X-ray Source X-1 in the Holmberg II galaxy, the quadruple gravitational lens system Q2237+0305 (the "Einstein Cross"), the Galactic planetary nebula NGC7027, and extragalactic planetary nebulae in M31. PMAS is now available as a common user instrument at Calar Alto Observatory.Comment: 4 pages, 9 figures (attached in JPEG format), Euro3D Science Workshop Proceedings, held in Cambridge May 21-23, 2003, to appear in AN (accepted

    Density functional theory for hard-sphere mixtures: the White-Bear version Mark II

    Full text link
    In the spirit of the White-Bear version of fundamental measure theory we derive a new density functional for hard-sphere mixtures which is based on a recent mixture extension of the Carnahan-Starling equation of state. In addition to the capability to predict inhomogeneous density distributions very accurately, like the original White-Bear version, the new functional improves upon consistency with an exact scaled-particle theory relation in the case of the pure fluid. We examine consistency in detail within the context of morphological thermodynamics. Interestingly, for the pure fluid the degree of consistency of the new version is not only higher than for the original White-Bear version but also higher than for Rosenfeld's original fundamental measure theory.Comment: 16 pages, 3 figures; minor changes; J. Phys.: Condens. Matter, accepte

    Ab initio calculations of reactions with light nuclei

    Full text link
    An {\em ab initio} (i.e., from first principles) theoretical framework capable of providing a unified description of the structure and low-energy reaction properties of light nuclei is desirable to further our understanding of the fundamental interactions among nucleons, and provide accurate predictions of crucial reaction rates for nuclear astrophysics, fusion-energy research, and other applications. In this contribution we review {\em ab initio} calculations for nucleon and deuterium scattering on light nuclei starting from chiral two- and three-body Hamiltonians, obtained within the framework of the {\em ab initio} no-core shell model with continuum. This is a unified approach to nuclear bound and scattering states, in which square-integrable energy eigenstates of the AA-nucleon system are coupled to (Aa)+a(A-a)+a target-plus-projectile wave functions in the spirit of the resonating group method to obtain an efficient description of the many-body nuclear dynamics both at short and medium distances and at long ranges.Comment: 9 pages, 5 figures, proceedings of the 21st International Conference on Few-Body Problems in Physic

    Repulsive Casimir Pistons

    Get PDF
    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive. We present three scenarios in which that is not true. Two of these depend on mixing two types of boundary conditions. The other, however, is a simple type of quantum graph in which the sign of the force depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction

    Stable marriage and roommates problems with restricted edges: complexity and approximability

    Get PDF
    In the Stable Marriage and Roommates problems, a set of agents is given, each of them having a strictly ordered preference list over some or all of the other agents. A matching is a set of disjoint pairs of mutually acceptable agents. If any two agents mutually prefer each other to their partner, then they block the matching, otherwise, the matching is said to be stable. We investigate the complexity of finding a solution satisfying additional constraints on restricted pairs of agents. Restricted pairs can be either forced or forbidden. A stable solution must contain all of the forced pairs, while it must contain none of the forbidden pairs. Dias et al. (2003) gave a polynomial-time algorithm to decide whether such a solution exists in the presence of restricted edges. If the answer is no, one might look for a solution close to optimal. Since optimality in this context means that the matching is stable and satisfies all constraints on restricted pairs, there are two ways of relaxing the constraints by permitting a solution to: (1) be blocked by as few as possible pairs, or (2) violate as few as possible constraints n restricted pairs. Our main theorems prove that for the (bipartite) Stable Marriage problem, case (1) leads to View the MathML source-hardness and inapproximability results, whilst case (2) can be solved in polynomial time. For non-bipartite Stable Roommates instances, case (2) yields an View the MathML source-hard but (under some cardinality assumptions) 2-approximable problem. In the case of View the MathML source-hard problems, we also discuss polynomially solvable special cases, arising from restrictions on the lengths of the preference lists, or upper bounds on the numbers of restricted pairs

    A new code for Fourier-Legendre analysis of large datasets: first results and a comparison with ring-diagram analysis

    Full text link
    Fourier-Legendre decomposition (FLD) of solar Doppler imaging data is a promising method to estimate the sub-surface solar meridional flow. FLD is sensible to low-degree oscillation modes and thus has the potential to probe the deep meridional flow. We present a newly developed code to be used for large scale FLD analysis of helioseismic data as provided by the Global Oscillation Network Group (GONG), the Michelson Doppler Imager (MDI) instrument, and the upcoming Helioseismic and Magnetic Imager (HMI) instrument. First results obtained with the new code are qualitatively comparable to those obtained from ring-diagram analyis of the same time series.Comment: 4 pages, 2 figures, 4th HELAS International Conference "Seismological Challenges for Stellar Structure", 1-5 February 2010, Arrecife, Lanzarote (Canary Islands

    p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    Full text link
    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector, and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. In order to evaluate its performance we have tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that for three of the IFSs a correction for so-called cross-talk due to overlapping spectra on the detector is required. Without such a correction spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.netComment: 18 pages, 15 figures, 3 tables, accepted for publication in A&
    corecore